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Abstract: We have derived the canonical guantization of Gaussian curvature at Planck scale, and 

which shows that the corresponding eigenvalues of Ganssian curvature and area element are 
proportional to each other.  Next, we rewrite vacuum Einstein equation at Planck scale as 

eigenvalue equation, we have proven that a solution (a spacelike hypersurface) of this equation is 
not the fixed space of constant curvature, but should be a series of spin networks with different 

eigen curvatures. We have also derived the quantized Gauss-Bonnet formula and discussed its 
application. 

Introduction 

It is known that physical space is effectively granular at Planck scale, there is no spatical 

continuity at short scale. When the curvature becomes very large, of the order of 1/
2

pL
=

3c

G , 

quantum effects of space should be considered
[1 3]

. There are a number of different approaches to 

quantum gravity. One natural avenue is using quantum Riemannian geometry in place of the 
classical differential geometry.  

In this paper, by using the quantization of area element of 2-surface at Planck scale, we would 
research into the quantizations of Gaussian curvature and vacuum Einstein equation at Planck scale, 

and then we have discussed their some applications. 

The Canonical Quantization of Gaussian Curvature at Planck Scale 

A. Corresponding Eigenvalues vK
 and vA

are Proportional to Each Other 

There are two basic field variables (Ashtekar’s new variables) in the canonical theory: the 

connection 
( )i

aA 
 and its conjugate momentum 

( )a

iE 
, from which the aria element dA of 

2-surface at Planck scale can be quantized.
[1 3]

 We will use the canonical guantization of area 

element dA of  2-surface to derive the canonical guantization of Gaussian curvature K. 

We have already known that  the canonical guantization of the area element dA of 2- surface 

at Planck scale can be represented as
[1 3]

  

^
2 (2) 28 ( , ) ( 1) ,r p rd A rL x v j j d x  



    
                    (1) 

Where the index   labels the vertexes on 2-surface, according to (1) we have the following 
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eguation 

^ ^
2 (2) 28 ( , ) ( 1) ,r p rK dA K rL x v j j d x  



    
            (2) 

where K is Gaussian curvature, by integrating both sides of (2), take 
,vA dA


  

 and take the 

limit as 0,  we consider the Gaussian curvature vK
 of 2-surface 

,v vs s
 

 
 is a region of 

2-surface, and vs 


 is the sufficiently small neighborhood of some vertex 
v . Thus we have 

^ ^
2 (2) 2

0
{8 ( 1) ( , )} ,

vA

v r v p rK dA K rL j j x v d x


 



             (3) 

Therefore, we have 

^ ^
2{8 ( 1)} ,v v r v p rK A K rL j j

        
                   (4a) 

We see in (4a) that the eigenvalues vA



 of operator 

^

vA



 should be

[1 3]
 

28 ( 1),v pA rL j j
    

                                (4b)  

It is known that Gaussian curvature K can be explained as following: The parallel displacement 

of a tangent vector around the boundary C of some 2-surface s  must have the corresponding 

intrinsic angular difference 
( )c  

, and according to Gauss-Bonnet theorem there must 

be
[9 10]

 

0

( ) ( ) .v
A

g v v v
c c

c d k s ds K dA K A

  



         
            (5) 

Taking limit, we have 

1
lim ( )( ),v
c v

v

K c
A






 

                                   (6)  

Which satisfies the definition of Gaussian curvature
[9 10]

. In eguation (5), where 
( )gk s

is the 

geodesic curvature of the smooth curve C, which vanishes if C happens to be a geodesic polygon. 

vK
 is Gaussian Curvature.   is the direction angle between the unite tangent vector T of curve C 

and the positive direction of curvilinearcoordinates u. where R denotes the region of the area 

element s of 2-surface, its interior point is the vertex v , and its boundary curve C is the smooth 

and closed curve with arc length [0, ]s l  as parameter. (0)  is the unite tangent vector at (0)a  

point of C, and ( )s denotes the parallel displacement of (0) around the boundary curve C. 

Eguation (5) shows that the intrinsic angle difference 
( ) (0) ( )l c      

 denotes the total 

change of the direction angle of the unite tangent vector (0)  in the parallel displacement process 

around the boundary curve C. (0)  is the direction angle between (0)  at (0)a  point and the 

curvilinear coordinate u, ( )l  is the direction angle between ( )l  and the curvilinear coordinate 

u, where ( )l  denotes the parallel displacement of (0)  from (0)a  point to ( )a l  point .  
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Let us suppose vA



 is the area of any sufficiently small 2-surface 

,vs 


which contains only 

the neighborhood of a vertex 
v ; and vs 


 is so small that vK

  can be considered to be its 

Gaussian curvature. Omiting limit symbol in (6), 

1
( ) .v

v

K c
A






 
   

 
                                     (7) 

Inserting (4b) into (7), we obtain 

2

1
( ) .

8 ( 1)
v

p

K c
rL j j 

 

 
   

                            (8) 

We see in (7) and (8) that the Gaussian curvature vK
  of any sufficiently small 2-surface 

vs 


 at Planck scale should be quantizing, since the area element vA



 of vs 


 is quantizing at 

Planck scale. Obviously,the eigenvalues of vA



 and vK

  at Planck scale should be relating to 

half-integers 
j , which are the multiplets of half-intergers 

j , and the product of the 

corresponding eigenvalues of vA



 and vK

  eguals the corresponding intrinsic angular difference 

( ),c
which is some determinate constant relating to the boundary condition C. Eguation (8) 

shows that the corresponding eigenvalnes of Gaussian curvature vK
  and area element vA




 are 

proportional to each other. And the proportional constant 
( )c

 is the corresponding intrinsic 
angular difference, which is only relative to the path of the parallel displacement of the tangent 

vector around the boundary C; and which is not relative to the area vA



 of vs 


. 

We will prove the point of view as mentioned above: By using the geodesic canonical 
coordinates,the Gaussian curvature can be represented as 

2

111 2

2 2

11

1
( , ) ,

( )

g
K u u

ug

 
   

                              (9) 

Taking the area integrations both sides of (10),we have 

2

111 2 1 2 1 2

11 2 2
( , ) .

( )s s

g
K u u g du du du du

u 


 

 
             (10) 

Where 
1 2

11 ,dA g du du
from (5) and (10) we obtain 

2

11 1 2

2 2
( )

( )
v v

s s

g
c K dA du du

u 


   

 
 

dsu
u

g
du

u

g

cc

1

2

111

2

11  









 

 c
ds.

                                            (11) 
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where ds is the line element. In eguation (11) we have used the eguation of parallel 

displacement
[9 10]

 

,1

2

11
u

u

g







                                        (12)       

which suits any coordinate. Eguation (11) shows that the intrinsic angular difference 
( )c

 is not 

relative to the area A  of s . Therefore, ( )c  in (7) and (8) can be considred to be the 
proportional constant, and which is only relative to the path of the parallel displacement of unite 

tangent vector ( )s aronnd the boundary curve C. That is to say, the proportional constant ( )c  

in (7) and (8) should be determined by the boundary condition C of area element s . 

B. Boundary Condition and Proportional Constant 

i) C is the continuously differentiable closed curve  

From rotation index theorem, there must be 

( ) 2 .v
c R

c kds K dA                                   (13a) 

ii) C is the boundary curve of geodesic triangle T  

There must be 

3

1

( ) ,i v g
T

i

c K dA A  


     
                          (13b) 

Where i  is the interior angles of T. Because i 
, thus in (14b) we have 

3

1

( ) 2 .g i

i

c A   


    
                                (13c) 

From Gaussian theorem, the angular excess of geodesic triangle is just egual to the area gA
of its 

spherical image, which satisfies the definition of Gaussian curvature 

0
lim .

v

g

v
A

v

A
K

A






                                         (13d) 

iii) C is the boundary curve of some spin network (geodesic quadrilateral) 

There must be 

4

1

( ) 2 2 .g i

i

c A   


    
                              (13e) 

We see in (13e) that the angular excess and the area gA
of spherical image of some spin network 

vs  have the same number domain 
(0 2 ),gA  

which are only relative to the sum 

4

1

i

i





of 

interior angles, and which are not relative to the quantized area element vA
 of vs . Therefore, 

gA
 can be considered to be the proportional constant of vK

 and 
.vA
 Inserting (14b) into (8), 

we obtain 
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2

( )
,

8 ( 1)

g

v

v p

Ac
K

A rl j j









 



 


 


                           (14a) 

Which shows that the corresponding eigenvalues of Gaussian curvature vK
 and area element 

avA
are proportional to each other, and the proportional constant is just the area gA




 of the 

spherical image of 
.

avs  

C. The Angle-Preserving Transformation for Spin Network gives the Same Spherical Image 

We will consider the state that the proportional constant gA



 is some given value. We consider 

some spin network, which is some guantized area element avs , and which have a lot of possible 

eigenareas avA
. The spin network can be considered as a geodesic quadrilateral. From formula 

(14b),one can conclude that the area of the spherical image on unital sphere of some spin network 

vs 


should be only relative to the sum of the interior angles i  of this spin network, and which is 

not relative to the length its each side. Therefore, we may take the angles-preserving transformation 

for some quantized spin network vs 


, thus, the sum 

4

1

i

i





 of the interior angles i  of 

respective possible area elements vs 


should be just the same, and the areas of the spherical image 

on unital sphere of respective vs 


should be also the same, that is to say 

.g gA A


 
                                           (14b) 

We see in formula(4b) that the area spectrum of some spin network vs 


should be 

28 ( 1),v pA rl j j
    

                                 (4b) 

Where the eigenareas vA



 are only relative to the eigenvalues of spin 

,j the quantum jump of 

spin 
j leads to the quantum transformation of the eigenareas vA




 of spin network vs 


. And 

formula (4b) shows that the eigenareas vA



have not related to the magnitudes of each side length 

and each interior angle of spin network. Therfore, we may take the angle-preserving transformation 

as following: Changing the lengthes of the respective sides of some spin network, let the spin 

network Z with eigenarea 
1

2

A

become as another spin network W with eigenarea 1A
 

or 3/2A
,…,but their corresponding interior angles i (i=1,…,4) have not changed. Therefore, the 

areas of the spherical imagles on unital sphere of eigenareas 
1 1 3/2

2

, , ,A A A  

…are the same 

g gA A


 
. The angle-preserving tranfornation as mentioned above is just the unified description 

of the quantized area element vs 


 under the condition 

4

1

i

i





constant, as shown in figure 1.  
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By using this angle-preserving transformation, we can transform the different eigenareas vA



 

with different geometric shapes into a lot of similar geodesic quatrilaterals, they have the same 

spherical image gA
, which is just the proportional constant with some given value  

[0,2 ].gA 
                                           (15) 

D. The All Gaussian Curvature of a closed surface at Planck Scale 

We suppose that a canonical closed surface consists of many spin networks nR
,and respective 

boundaries are the canonical closed curves 1, , ,nc c
they have positive directions. And the area 

element of each spin network at Planck scale should be
[1]

 

2 2 (2) 2( ) {8 ( , ) ( 1)} ,s pdA g x d x L x v j j d x     
              (16a)    

inserting (17a) into the follwing Gaussian-Bonnet theorem in the large 

,4 dAK
s                                            (16b) 

 we obtain 

2 2 (2){8 ( , ) ( 1)}v p vs
dAK d x L x v j j K

   


   
 

1 2

2

1 1 1 2 2 28 ( 1) ( , ) ( ) ( , ) ( )p x xL j j dx x v K x dx x v K x     


     
 

1 2
2 2

1 2
1 2

2 2

2

1 1 2 28 ( 1){ (0) ( , ) (0) ( , )}
x x

p x x
x x

L j j K dx x v K dx x v
 

     
 



  
 

    
 

1 2

28 ( 1){ (0) (0)}p x xL j j K K   


 
 

(0)v vA K
 




 

28 ( 1) (0) ( )p v gL j j K c A
   

  

       
 

4 ,                                                      （17） 

where 1 1( )xK x  and  2 2( )xK x  have no contributions in the integral signs at 1 0x 
 and 2 0x 

. 

Hence, the all Gaussian curvature should be given by 

Figure 1 We take the angle-preserving transformations for all the spin networks with different 

eigenareas ,vA


  which give a lot of similar geodesic quantrilaterals, thus, they have the same 

spherical image .gA  
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2

1 2( , ) 8 ( 1) (0) 4 ,p vs
dAK x x L j j K

 


   
                   (18) 

which is the quantized Gaussian-Bonnet formula at Planck scale, and which shows that all Gaussian 

curvature is the geometric invariant. Althongh the sufficiently small area vA



of 2-surface and its 

Gaussian curvature vK
 at the neighborhood of each vertex 

v  are quantized, yet the 

multiplicative product of corresponding eigenvalues vA



 and vK

 must be egual to some 

eigenarea gA



 of spherica limage. (see(8)). And the all Gaussian curvature of a closed spin 

network (any closed 2-surface, K＞0) must be equal to 4π , although each pair vA



 and vK

  

can take the corresponding different eigenvalues. 

The Quantization of Vacuum Einstein Equation at Planck Scale 

A. Eigenvalue Equation 

The 2-dimention vacuum Einstein equation can be written as
[4]

. 

1212 .R Kg
                                             (19) 

Now, we rewrite (20) as the eigenvalue equation
[5]

 

1212 ,vR K g  
  


                                       (20) 

which is the quantized vacuum Einstein equation at Planck scale. 

It is known that the vacuum and ∧-term solutions of Einstein field equation often admit the 

subspaces of constant curvature. On a single subspace the Gaussian curvature K is of course 

constant, but it may have differing values on different subspaces
[4]

. 

B.Eigen Curvatures of de Sitter Space 

It is known that de Sitter space can be considered to be the solution of vacuum Einstein equation, its 

metric
[4]

 

2 2 2 2
2

2 2 2 2 2

,

[1 ( )]
4

dx dy dz dt
dS

K
x y z t

  


   
                          （21a） 

which describes the space-time of constant curvature. The metric of the spacelike hypersurface in 

de Sitter space is 

2 2 2
2

2 2 2 2

,

[1 ( )]
4

dx dy dz
dS

K
x y z

 


  
                               (21b) 

which has the equivalent form
[4]

 

2
2 2 2 2 2

2
( sin ).

1

dr
dS r d d

Kr
    

                           (21c) 

Althongh de Sitter space have differing forms in different coordinate systems, yet they should be 

quantized at Planck scale, because we have proven that Gaussian curvature vK
 should be 
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quantized as shown in the formula (8),(13d) and (15), thus we obtain 

2 2 2
2

2

2 2 2

2

,

1
1 ( )

4 8 ( 1)

g

p

dx dy dz
dS

A
x y z

L j j 





 

  
    

                    (22a) 

And 

2
2 2 2 2 2

2

2

( sin ).

1
8 ( 1)

g

p

dr
dS r d d

A
r

L j j 

  




  
 

 
             (22b) 

We see in (22a) and (22b) that the metric of de Sitter space at Planck scale is not fixed constant 

curvature metric, but its metric should be quantized at Planck scale, since the Gaussian curvature 

vK
 at Planck scale  must be quantized. That is to say, as the solutions of vcuum Einstein equation 

(eigenvalue equation (21)) at Planck scale are a series of eigen metrics with eigen curvatures. 

We should emphasize that r  in (21c) and (22b) is not radius distance, and the relation between r  

and , ,x y z  is not also the relation of the spherical coordinates and right-angle coordinates. 

Discussion 

A. Application for Black Holes 

We see in (18) that the all Gaussian-curvature is the geometric invariant, when vK
  in (19) are 

same at the neighborhood of each vertex 
v , (18) becomes 

 

28 ( 1) 4 ,v pK L j j 


  
                               (23) 

and the total area of a closed 2-surface should be 

28 ( 1).pA L j j 


 
                                  (24) 

According to our views in this paper, we can explain the quantized relations among the horizon area 
HA , Bekenstein-Hawking entropy 

BHS  and Gaussian curvature 
HK  of 

HA . From 

24

H
BH

p

A
S

L


                                              (25) 

and considering Schwarzschild, Nut-Taub and Kerr-Newman black holes, their horizons have the 
topology of 2-sphere. Therefore, formula (23) should be suitable for these black holes, thus we have 

4
.H

H
K

A




                                               (26) 

Comparing (25) and (26), the Gaussian curvature of horizon area can be represented by  

2

H

BH

p

K
S L




                                             (27) 

We see in (26) and (27) that each eigenvalue of 
HK  and its corresponding eigenvalue of 

HA  
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must form the geometric invariant; Similarly, each eigenvalue of 
HK  and its corresponding 

eigenvalue of 
BHS  also form invariant. 

The physical area 
HA  of horizon is a closed spin network, which is certain finite linear 

combinations of loop states. Therefore, formulas (26) and (27) show that the increase of 
HA  and 

the decrease of 
HK  should be quantized, the increase of 

BHS  and the decrease of 
HK  should be 

also quantized. 

B. Why did Gaussian Curvature is Relative to Physical Entropy? 

We see in (27) that Gaussian curvature is only relative to physical entropy, that is to say, the 
physical entropy must influence the curve of surface, why? We would research into this viewpoint 

at next paper. 

The authors would like to thank Prof. Zhang Jianghua for fruitful discussion. 
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