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Abstract. In this paper we investigate the existence of positive solution of the following discrete 
two-order three-point boundary value problem. 
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where  is a positive parameter, [2, ),n  [2, ], 0 1, [1, 1]p n b bp p     and   

( , ).C Rf R  We will use the Krasnoselskii's fixed-point theorem and obtain the existence of 

positive solution of the boundary value problem in a cone, here ( )a t is allowed to change sign 

on[1, ]n . An example is given to demonstrate the applications of the theorems obtained. 

Introduction 

In this paper, we will consider the existence of positive solution for the nonlinear discrete 
three-point boundary value problem 

2
1 ( ) ( ) 0, [1, ],t ty a t f y t n                                                    (1) 

0 10, ,p ny by y                                                                (2) 

where   is a positive parameter, [2, ),n  [2, ], 0 1, [1, 1]p n b bp p     and  

f  ( , ).C R R   Recently, some authors considered the existence and uniqueness of positive 
solutions of discrete boundary value problems (See[1,8,10,11]) and obtained some existence results. 
In [12], G.Zhang studied the existence and nonexistence of the following discrete three-point 
boundary value problem 

2
1 ( ) 0, 1, 2,..., .k tx f x k n                                                     (3) 

We want to point out that our problem is different from [12]. Moreover, to the author's knowledge, 
no one has studied the existence of positive solution for problem (1), (2) using the assumptions 
that ( )a t is allowed to change sign on[1, ]n . 
  Hence, we will establish some criteria for the existence of at least one positive solution of 
BVP(1), (2). In addition, the following Krasnoselskii's fixed-point theorem is the key tool in our 
approach. 
  Theorem 1.1.(See[7, 9]) Let E be Banach space and K E be a cone in E . Assume 

1 and 2 are open subsets of E with 1 1 20    , and let :A K  2 1( \ ) K    be a 

completely continuous operator. In addition, suppose either 1|| || || ||,Au u for u K    and 

|| ||Au  2|| ||, || || || ||,u for u K or Au u    
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1,for u K  || || || ||,and Au u 2for u K  holds. Then A has a fixed point in 

2 1( \ ).K    

   In this paper, a positive solution *y of the BVP(1), (2) will mean a solution *y of the BVP(1), (2) 

satisfying * 0, 0 1.ty t n    Moreover, we shall use the following assumptions. 

(H1) ( , )f C R R  is continuous and nondecreasing. 
(H2) :[1, ] ( , )a n    is continuous and such that ( ) 0, [1, ]; ( ) 0,a t t p a t    

  [ , ].t p n Moreover, ( )a t doesn't vanish identically on any subinterval of [1, ]n . 

(H3) There exist nonnegative constants in the extended reals, 0 , ,f f such that  

  0
0

( ) ( )
lim , lim .

uu

f u f u
f f

u u  
   

(H4) For all [0, ],t n p  there exists a constant ( , )bp p  such that the function 

( )A t  1
( ) ( ) 0,a p t a p t    


 where 

 ( ) max{ ( ),0}, ( )a t a t a t   min{ ( ),0},a t  
2

, .
p b p
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 
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Next, for the sake of convenience, set 
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It is easy to know that ( , ) 0, ( , )k t s t s  [0, 1] [0, 1].n n   Moreover, we state and prove an 
inequality for ( , )k t s (see Lemma2.4 in Section 2). In addition, set 

  1
[0, 1]
max ( , ) ( ),

t n
s bp

k t s a s


 

 


   2
[0, 1]

1

max ( , ) ( ),
p

t n
s

k t s a s

 


   where min{ ,1 }.b
p

    

The paper is organized as follows. In next section, we present some notations and preliminaries. 
The main results, existence of positive solution of BVP (1), (2) is given in Section 3. In section 4, 
we will give an example to illustrate our main results. 

Preliminaries and Lemmas 

  Throughout this paper, we always use the following notations and signs, 
{0, 1, 2,...};Z    {0,1,2,...};N  [ , ]m n { , 1, 2,...} ; ,m m m Z x R      [ ]x is the integer value 
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function; 1
1 , ( ), 2, .n n

t t t t ty y y y y n t N
          In order to discuss problem (1), (2), the 

preliminary lemmas are in this section. Now, let [0, 1]C n   be the Banach space with norm 

[0, 1]

|| || sup | | .
t n

ty y
 

  Denote 

  0 0 1[0, 1]
[0, 1] { [0, 1] : min 0 0, },t t n pt n

C n y C n y and y y by
 

        

  { tP y  0 [0, 1]: tC n y  is concave on[0, ],p and convex on [ , 1] .p n   

It is obvious that P is a cone in [0, 1]C n . 

Lemma 2.1. Let ,ty P  then ( ) , [0, ],t py t y t p  and ( ) , [ , 1].t py t y t p n    

Lemma 2.2. Let ,ty P  then || ||, [ , ].ty y t bp    

Lemma 2.3. (See[12]) Let 1.bp n  Then for [1, ],th C n  the problem   
2

1 0,t ty h   t 0 1[1, ], 0, ,p nn y by y    has a unique solution 

  
1 1
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t
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     [0, 1],t n   this is

1

( , ) .
n

t s
s

y k t s h


  

 
Lemma 2.4. For all 1 2[ , ], [ , ],s p s p n  then 

1 2( , ) ( , ), [0, 1].k t s k t s t n                                                      (4) 

Lemma 2.5. Let conditions 1 2( ), ( )H H and 4( )H hold. Then, for all [0, ),q   

( , ) ( ) ( ( )) ( , ) ( ) ( ( )).
p n

s s p

k t s a s f q s k t s a s f q s


  

 

   

Proof. By the definition of ( )t , for each [0, ],r n p  it is easy to get 

( ) 1
p r

p r
n p n p

 
   

 
(1 ),

p


 and ( ) (1 ).

n p r
p r b

n p
  

  


Thus, in view of 

( , )bp p  and f is nondecreasing, for [0, ],r n p  and ,
p

n p

 



we have 

(1 (1 )) (1 (1 )).
r r

f f b
n p p n p


    

 
Set , [0, ],s p r r n p    for all [0, )q   

, by view of Lemma 2.4 and condition 4( )H , we obtain 

0

( , ) ( ) ( ( )) ( , ) ( ) ( ( ))
p n p

s r

k t s a t f q s k t p r a p r f q p r


    


 

 
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1

1

( , ) ( ) ( (1 (1 )))

( , ) ( ) ( (1 (1 )))

n p
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r

r
k t p r a p r f q
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

    

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1

( , ) ( ) ( (1 (1 ))).
n p

r

r
k t p r a p r f q b

n p






    
  

Again, setting , [0, ],s p r r n p    for [0, ),q  we get 

( , ) ( ) ( ( ))
n

s p

k t s a s f q s




1

( , ) ( ) ( (1 (1 ))).
n p

r

r
k t p r a p r f q b

n p






    
  

The proof is completed. 
Now we define an operator :T P P  by 

1

( ) ( , ) ( ) ( ), ( , ) [0, 1] [1, ].
n

t s
s

Ty k t s a s f y t s n n


                                    (5) 
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Lemma 2.6. Assume that conditions 1 2( ), ( )H H and 4( )H are satisfied. Then 

:T P P is completely continuous. 
Proof. At first, we show that :T P P . For ,y P by Lemma 2.1, Lemma 2.5, and f is 
nondecreasing, we have 

( , ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ( ) ) ( , ) ( ) ( ( ) ) 0,

pn n

s s s
s s s p

p n

p p
s s p

k t s a s f y k t s a s f y k t s a s f y

k t s a s f s y k t s a s f s y

 



 

 

  

 

 

 

  

  

 
 

which implies 

1 1

1

( ) ( , ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ) 0,

n n n

t s s s
s s s

s
s

Ty k t s a s f y k t s a s f y k t s a s f y

k t s a s f y





  





  





  

 

  


 

again 0 1( ) 0, ( ) ( ) ,n pTy Ty b Ty  it follows That :T 0 [0, 1].P C n  On the other hand, 
2 ( ) ( ) ( ) 0, [0, ],t sTy a s f y s p      2 ( ) ( ) ( ) 0, [ , 1].t sTy a s f y s p n       

Thus, :T P P . Next, it is easy to prove that :T P P is completely continuous by the 
Arzela-Ascoli theorem. The proof is completed. 
 
Lemma 2.7. Assume that conditions 1( ),H 2( )H and 4( )H are satisfied. If *y P is a fixed point of T 

and *|| || 0,y  then *y is a positive solution of the BVP (1), (2). 

Proof. At first, we claim that * 0.py  Otherwise, * 0,py  which implies * *
1 0.n py by    Since *

py is 

nonnegative convex function on [ , 1],p n  we have * 0, [ , 1],ty t p n   it 

implies * *
1p py y    * 0.py  Again, since * *y Ty and 2 *

ty  ( ) ( ) 0,sa s f y    

[0, ]s p , then * * 0, [0, 1].t py y t p      Thus, we get *
ty  * 0, [0, ].py t p   Since 

*
py is nonnegative function, hence * 0, [0, ],ty t p  which yields contradiction with *|| || 0.py   

Next, in view of Lemma 2.1, for * ,ty P we have 

* * 0, (0, ].t p

t
y y t p

p
                                                          (6) 

Notice that ( )a t does not vanish identically on any subinterval of [1, ],t p by the proof of Lemma 
2.6 and as shown in Eq.6, for any (0, 1),t n  we have  

  

* * * * *

1 1

*

1

( ) ( , ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ) 0.

n n

t t s s s
s s s

s
s

y Ty k t s a s f y k t s a s f y k t s a s f y

k t s a s f y







  





  





   

 

  


 

Thus, we assert that
*y is a positive solution of the BVP (1), (2). 

Existence of Solution 

Theorem 3.1. Assume that conditions 1( )H  4( )H are satisfied, 2 0 1 .f f    Then for 

all satisfying 
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1 2 0

1 1
,

f f




 
 

                                                            (7) 

there exists at least one positive solution of the BVP(1), (2), which belongs to P. Moreover, in the 
case where f is superlinear, then as shown in Eq.7 becomes0  . 

Proof. Let 0  such that 2 00 1 ( ).f     Since 0 0
lim ( ( ) ),

u
f f u u
  there exists 

* 0  such that 

0 *( ) ( ) , [0, ].f u f u for u                                                     (8) 

Let 
* *{ :|| || }.y P y      For

*
,y P  as shown in Eq.5.,8., we have 

1 1

2 0 * *
1

( ) ( , ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ) ( ) || ||,

pn n

t s s s
s s s p

p

s
s

Ty k t s a s f y k t s a s f y k t s a s f y

k t s a s f y f y

  

    

 

  





  

     

  


 

which yields 

*
|| || || ||, .Ty y for y P                                                      (9) 

Now, we consider two cases. 

CASE 1. If ,f    set 1 0  such that
1 1

1
0

( )f 


 

.  Since lim( ( ) ),
u

f f u u


   

there exist *
*   such that 

*
1( ) ( ) , .f u f u for u                                                     (10) 

Set *

*{ :|| || }.y P y


     For any * ,y P


  from Lemma (2.2), we have 
*|| || ,ty y   for t [ , ].bp   As shown in Eq.5.,10., we obtain 

[0, 1]
1

[0, 1] [0, 1]
1

|| || max [ ( , ) ( ) ( ) ( , ) ( ) ( )]

max ( , ) ( ) ( ) max ( , ) ( ) ( )

n

s s
t n

s s

s s
t n t n

s s bp

Ty k t s a s f y k t s a s f y

k t s a s f y k t s a s f y





 



 



 
 

 

   
 

 

 

 

 
 

* * *
1 1 1

[0, 1]
( ) max ( , ) ( ) ( ) || ||,

t n
s bp

f k t s a s f y


      
  



       this is 

*|| || || ||, .Ty y for y P


                                                     (11) 

Therefore, as shown in Eq.9.,11. and the Theorem 1.1, it follows that T has a fixed point 
in *

*
( \ ).P 
   Hence, from Lemma 2.7, there exists at least one positive solution of the 

BVP(1), (2). 
CASE 2. If ,f   let 0,   take 0M  such that 1 1.M   Since lim( ( ) )

u
f u u


  

,  there exists some * satisfying *
*   such that *( ) , .f u Mu u    

Set * {y


   :P *|| || }.y  As before, we get 

[0, 1]
1

|| || max [ ( , ) ( ) ( ) ( , ) ( ) ( )]
n

s s
t n

s s

Ty k t s a s f y k t s a s f y




 

 
 

    

* * *
1

[0, 1]
max ( , ) ( ) ( ) || ||,s

t n
s bp

M k t s a s f y M y


    

 


     and the proof proceeds as 

before. The proof of Theorem 3.1 is completed. 
 
Theorem 3.2. Assume that conditions 1 4( ) ( )H H are satisfied, and 2 1 0.f f    Then for 
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all satisfying 

1 0 2

1 1
,

f f




 
 

                                                           (12) 

there exists at least one positive solution of the BVP(1), (2), which belongs to P.  Moreover, in the 
case where f is sublinear, then as shown in Eq.12. becomes 0 .    

Proof.  At first,  for 0 0
lim ( ( ) ),

u
f f u u
  we consider two cases. 

CASE 1. If 0 .f    Set 1 0  such that 1 0 10 1 ( )f      , Since 

0

0 lim( ( ) ),
u

f f u u


  there exists a positive constant * such that 

0 1 *( ) ( ) , 0 .f u f u for u                                                    (13) 

Set
* *{ :|| || }.y P y     For any y

*
,P  by Lemma 2.2, we get 

*|| || ,ty y    for [ , ],t bp  then as shown in Eq.5.,13., we have 

[0, 1]
1

[0, 1] [0, 1]
1

0 1 * 1 0 1 * *
[0, 1]

|| || max [ ( , ) ( ) ( ) ( , ) ( ) ( )]

max ( , ) ( ) ( ) max ( , ) ( ) ( )

( ) max ( , ) ( ) ( ) || ||,

n

s s
t n

s s

s s
t n t n

s s bp

t n
s bp

Ty k t s a s f y k t s a s f y

k t s a s f y k t s a s f y

f k t s a s f y





 





 

      



 
 

 

   
 



 


 

 

      

 

 



 

this is 

*
|| || || ||, .Tu u for y P                                                       (14) 

CASE 2. If 0 ,f   let 0,  and take 0M  such that 1 1.M  Since 
0

lim( ( ) ) ,
u

f u u


  there 

exists a positive constant * such that ( ) , 0f u Mu for u    

*.  Set *

*{ :|| || }.y P y


     As before, we have 

[0, 1]
1

* 1 * *
[0, 1]

|| || max [ ( , ) ( ) ( ) ( , ) ( ) ( )]

max ( , ) ( ) ( ) || ||,

n

s s
t n

s s

s
t n

s bp

Ty k t s a s f y k t s a s f y

M k t s a s f y M y









    



 
 



 


 

    

 


 

hence, Eq.14. holds too. 
Next, let 0  such that 20 1 ( ).f      Since lim ( ( ) ),uf f u u  there exists 

some  satisfying *   such that  

( ) ( ) , .f u f u for u                                                       (15) 

Now, there are two cases to consider too. They are f is unbounded and bounded. If f is unbounded. 

Since f is continuous, we know that there is a positive constant * and *  such that 
* *( ) ( ), [0, ].f u f for u                                                     (16) 

Since * ,  then as shown in Eq.15.,16., we obtain 
* * *( ) ( ) ( ) , [0, ].f u f f u                                                  (17) 

For *, || || ,y P y   from as shown in Eq.4.,17., we have 

1 1

* *
2

1

( ) ( , ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ) ( ) || || .

pn n

t s s s
s s s p

p

s
s

Ty k t s a s f y k t s a s f y k t s a s f y

k t s a s f y f y

  

    

 

  






  

     

  


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If f is bounded, then there exists a positive constant 1L such that 1( ) .f u L In the case 0.f   

Take *
1max{ , },L   for ,y P *|| || ,y  as shown in Eq.5, one has 

1 1

* *
2 1 2

1

( ) ( , ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ) || || .

pn n

t s s s
s s s p

p

s
s

Ty k t s a s f y k t s a s f y k t s a s f y

k t s a s f y L y

  

    

 

  





  

      

  


 

Hence, in either case, setting *

*{ :|| || },y P y


    we always have 

*|| || || ||, .Ty y for y P


                                                    (18) 

Therefore, as shown in Eq.14., 18., and Theorem 1.1, it follows that T has a fixed point 

in *
( \P




*
).

Hence, from Lemma 2.7, there exists at least one positive solution of the BVP 
(1), (2). The proof of Theorem 3.2 is completed. 

Example 

In this section, we will give an example is to illustrate our main results. 
Example 4.1 . Consider the boundary value problem 

2
1

0 6 11

2
( ) ( ) 0, [1,10],

3
1

0, ,
2

t ty a t f y t

y y y


   

  


                                           (19)    

where 
1 2

10, 6, , ,
2 3

n p b     and

2

3

20( 6) ,0 6,
( ) 3

(6 ) ,6 11,
20

t t
a t

t t

   
 

  

then we have 
3

3, .
20

bp     

Now taking 4,   we get 
1

.
2

   Let 

2

2

( 5) 25, 0 6,

12
( 11) 12,6 11,

25

t

t t
y

t t

    
 

   

and 
222 2

( ) .
1 2625 2625

u u
f u

u
 


 

Then, by calculation, we have 

0 1 2

2 8 825 2625
, , , ,

2625 875 4 2
f f      thus, we have 2 0 1

66
1 ,

35
f f      and 

1

66 1 2

35 3f




   
 2 0

1
1.

f



By Theorem 3.1, we have the BVP (19) has at least one positive 

solution. 

Summary 

Assume that conditions 1( )H  4( )H are satisfied. When 2 0 1 ,f f    then for all satisfying 

1 2 0

1 1
,

f f




 
 

there exists at least one positive solution of the BVP(1), (2), which belongs to P. 

Moreover, in the case where f is superlinear, then as shown in Eq.7 becomes0  ; When  

2 1 0,f f    then for all satisfying
1 0 2

1 1
,

f f




 
 

 there exists at least one positive solution           

of the BVP(1), (2), which belongs to P. Moreover, in the case where f is sublinear, then as shown in 
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Eq.12. becomes 0    are obtained. 
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