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Abstract. In this paper we investigate the existence of positive solution of the following discrete
two-order three-point boundary value problem.

A%y, +Aa(t) f(y,)=0,te[Ln],
Yo = O’byp = Yo

where 4 is a positive parameter, N€[2+%), pe[2n],0<b<lbpell p-1] 444

f eC(R,R)-we will use the Krasnoselskii's fixed-point theorem and obtain the existence of
positive solution of the boundary value problem in a cone, here (1) is allowed to change sign
on[LN] An example is given to demonstrate the applications of the theorems obtained.

Introduction

In this paper, we will consider the existence of positive solution for the nonlinear discrete
three-point boundary value problem

A’y +2at) f(y) =0, te[Ln], 1)

yO = 0’ byp = yn+1l (2)
where A is a positive parameter, ne[2,+x), pe[2,n],0<b<1bpe[l, p—-1]and

f e C(R",R"). Recently, some authors considered the existence and uniqueness of positive

solutions of discrete boundary value problems (See[1,8,10,11]) and obtained some existence results.
In [12], G.Zhang studied the existence and nonexistence of the following discrete three-point
boundary value problem

A%+ f(x)=0,k=12,..,n. (3)

We want to point out that our problem is different from [12]. Moreover, to the author's knowledge,
no one has studied the existence of positive solution for problem (1), (2) using the assumptions
thata(t) is allowed to change sign on[L,n].

Hence, we will establish some criteria for the existence of at least one positive solution of
BVP(1), (2). In addition, the following Krasnoselskii's fixed-point theorem is the key tool in our
approach.

Theorem 1.1.(See[7, 9]) Let E be Banach space and KcE be a cone in E. Assume
Q, and Q, are open subsets of E with 0eQ, cQ, cQ,, and let A:KN (Q,\Q,) > K be a

completely continuous operator. In addition, suppose either || Au||<||u]|, forue KNaQ, and
|| Au > [lull, forue KNoQ, or || Au | u |,
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forue KNoQ,, and|Au|<||lu], forue KNoQ, holds. Then A has a fixed point in
KN(Q,\Q,).
In this paper, a positive solution y~ of the BVP(1), (2) will mean a solution y” of the BVP(1), (2)

satisfying y, >0, 0 <t < n+1.Moreover, we shall use the following assumptions.
(Hy) f eC(R",R")is continuous and nondecreasing.
(H2)a:[L,n] — (—oo,+x) is continuous and such thata(t) > 0,t €[4, p]; a(t) <0,

t €[ p,n]. Moreover, a(t)doesn't vanish identically on any subinterval of [1,n].
(Hs) There exist nonnegative constants in the extended reals, f,, f_, such that

£ = lim Y ¢ i L)

u—0" u u—>+oo u

(H4) Forall te[0,n— p], there exists a constantz  (bp, p) such that the function

At) = a*(p—ét)—%a‘(pﬂ) >0, where

_ 2
a*(t) = max{a(t), 0}, a (t) = —min{a(t),q}, & = : ; —pr.
Next, for the sake of convenience, set
t
—, 0<t<p,
k,(t,s 0<t<p,
“=1 1—bp +(b—1t kts)= {k(t ) t< Fi and
n+1-bp+(b-1) ,p<t<n+l (ts) p<tsn+d
n+l1-p
mﬂth(b_nt+m+i_bms,0£s<t£p£n+L
n+1-bp
k(6 s) =k, (ts) = LZUSHMHL=B0) 6 o panig,
n+1-bp
(n+1-p)
k,(t,s) =——=t, 0<t<p<s<n+l
15(t,9) 1 bp p
K, (t,s) = (b—Dt+(n+1- bm S, 0<s<pgt<n+],
n+1-bp
bp(t—s)+(n+1-t
K,(t,8)4 Ky (t,S)= b il(bp )sO£pSS<tSn+L
(n+1- s)
t,s)=——= 0<p<t<s<n+l.
Ky (t,s) = Nl bp psi<

It is easy to know thatk(t,s)>0,(t,s) e [0,n+1]x[0,n+1]. Moreover, we state and prove an
inequality for k(t,s) (see Lemmaz2.4 in Section 2). In addition, set
A, = 1 max Zk(t s)a*(s), A, = Mmax Zk(t s)a’(s), where u =min{b, 1——}

te[0,n+1]

The paper is organlzed as follows. In next section, we present some notations and preliminaries.
The main results, existence of positive solution of BVP (1), (2) is given in Section 3. In section 4,
we will give an example to illustrate our main results.

Preliminaries and Lemmas

Throughout this paper, we always use the following notations and signs,
Z={0,#1,+£2,..}; N={0,1,2,..}; [m,n] ={m,m+1m+2,..}c Z;VxeR, [x]is the integer value
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function; Ay, = y,., - ¥,,A"Y, =A(A""y,),n>2,te N. In order to discuss problem (1), (2), the
preliminary lemmas are in this section. Now, let C[O,n+1] be the Banach space with norm
lyll=sup |y, |. Denote

te[0,n+1]

CO*[O,n+1]:{yteC[O,n+1]:tr[E|inl]yt20and Yo=0,Y¥,,,=by,},

P ={y, € C,[0,n+1] y, is concave on[0, p], and convex on [p,n +1]}.
It is obvious that P is a cone in C[0,n+1].
Lemma2.l. Lety, eP, then y >a(t)y, te[0,p], andy, <a(t)y,,te[p,n+1].
Lemma 2.2. Lety, e P, theny, > u||y|,te[bp,z].
Lemma 2.3. (See[12]) Letbp = n+1.Then forh, € C[1,n], the problem
A’y ,+h =0, te[Ln],y, =0, by, =Y, hasaunique solution

(ZZh bZih) zih te[0,n+1], thisisy, = ZK(t s)h.

n+1- bpleO i=0 j=0 i=0 j=0

t

Lemma 2.4. For alls, €[z, p], s, €[ p,n], then
k(t,s,) > Ak(t,s,),t €[0,n +1]. 4)
Lemma 2.5. Let conditions (H,), (H,) and (H,) hold. Then, for all g €[0,+x),

S k(L9 (91 (@(s) > Kt 92 (5)f (@a(o)

Proof. By the definition of «(t) , for each r €[0,n— p] it is easy to get

a(p——r) 1—n— (1——) anda(p+r) = P-r (1-Db). Thus, in view of
p
7 € (bp, p)and f is nondecreasing, forr €[0,n— p],and o = r?;;,we have

fl-——@-5y)> fa——"—@-b)).Sets= p—sr,r <[0,n— p], forallq e [0,)
n-p~ p n-p
, by view of Lemma 2.4 and condition (H,), we obtain

Sk )" (0 (Ga(s) = 3 K, p-t)a’ (p-5r) f (aa(p - o1)

=Skt p-sna‘ (p-onf ([@l-——@a-2))
r=1 n-p p

> AY K(t, p+D)a’ (p—8n) (qll-——(1-2))
r=1 n-p p

Again, settings=p+r,r €[0,n— p], forg €[0,x), we get
> K(t5)a (5)(qa(s) = 2.k, pe)a (p+n) f(a- - @-b)

The proof is completed.
Now we define an operator T :P — P by

(Ty), = Zzn:k(t,s)a(s) f(y,) (t,s) e[0,n+1]x[1,n]. (5)

s=1
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Lemma 2.6. Assume that conditions (H,), (H,)and(H,) are satisfied. Then

T : P — Pis completely continuous.
Proof. At first, we show that T:P—>P. For yeP,by Lemma 2.1, Lemma 2.5, and f is

nondecreasing, we have

KIS (1) = LKL O (1) - XKL 9a (9)1(3,)

> Zp:k(t, s)a’(s) f(a(s)y,) —Zn:k(t, s)a (s) f(a(s)y,) =0,
which implies

(1Y), = A2 KA F (1) = A2k () F (1) + A K(E )a(s) F(1,)

> 23 K(t,5)a* (s) f (y,) 20,

s=1

again (Ty), =0,(Ty),,, =b(Ty),, it follows ThatT:P — C;[0,n +1].On the other hand,

A¥(Ty), =-2a"(s) f (y,) <0,s [0, p], A%(Ty), = Aa (s) F(y,) >0, s €[ p,n+1].
Thus, T:P—>P. Next, it is easy to prove thatT:P — P is completely continuous by the
Arzela-Ascoli theorem. The proof is completed.

Lemma 2.7. Assume that conditions (H,), (H,) and (H,) are satisfied. Ify" € P is a fixed point of T
and|| y” ||> 0, then y" is a positive solution of the BVP (1), (2).

Proof. At first, we claim thaty, >0.Otherwise, y, =0, which impliesy, , =by, =0. Sincey is
nonnegative  convex  function  on [p,n+1], we have vy, =0,te[p,n+1], it
impliesAy, =y, — y, =0.Again, since y" =Ty and Ay, =— Aa"(s) f (y,) <0,

se[0, p], then Ay, > Ay; =0,t [0, p—1]. Thus, we gety, <y, =0,t [0, p]. Since

y, is nonnegative function, hence y, =0, t [0, p], which yields contradiction with ||y, [[>0.

Next, in view of Lemma 2.1, for y; e P, we have

b .
Ye zgyp>0,te(0, pl. (6)

Notice thata(t) does not vanish identically on any subinterval of t <[4, p], by the proof of Lemma
2.6 and as shown in Eq.6, for any t e (0,n+1), we have

Vi = (1), = A2 KA F (1) = A2 K(E 9 (5) () + XKL a() (1)

> 2y k(t,s)a" (s) F (y)) > 0.

s=1

Thus, we assert that Y is a positive solution of the BVP (1), (2).

Existence of Solution

Theorem 3.1. Assume that conditions (H,)~ (H,) are satisfied, A,f, <A,;f_ . Then for
all A satisfying
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PP i (7)
Al foo AZ fO

there exists at least one positive solution of the BVP(1), (2), which belongs to P. Moreover, in the

case where f is superlinear, then as shown in Eq.7 becomes0< A <.

Proof. Let £>0 such that 0<A<1/A,(f,+¢). Since f,=lim _  (f(u)/u), there exists
p. > 0such that

f(u)<(f,+e), foruel0, p.]. (8)
Let Q, ={yePyl|<p}. ForyedQ, <P, asshowninkEg.5.,8., we have

(), = 2K (1) = AL KL (9 F (v - 2L Kt 9a () (1,

p
<Akt s)a’(s) f(y,) <A, (T +e)p. < p. =y,

s=1

which yields
Tyl yll, for yePNoQ, . 9)
Now, we consider two cases.

CASE 1. If f_ < oo, setg >0such that0<; < A. Since f_ =lim(f(u)/u),

— E,‘l u—>o

1\ T

there exist p” > p. such that

f(u)>(f,—¢g)u, foru> up". (10)
Set Qp* ={yeP:y|<p} Forany ye 8Qp* c P,from Lemma (2.2), we have
Y, > u||y|l= po , fort e [bp,z]. As shown in Eqg.5.,10., we obtain

Ty =2 max [Y Kt 9a () F(v,)+ L k(t ) F (1]

> + > N *
> 2 max]g,k(t,s)a (S)f(ys)—/ltgg%]s_szk(tﬁ)a (s)f(y.)

te[0,n+1

> 2p(f, —2)p” max D k(ts)a’(s)=AAy(f, —a)p 2 p" =llyl| this is
! s=bp

ITy [yl for y e PNoC .. (11)

Therefore, as shown in EQ.9.,11. and the Theorem 1.1, it follows that T has a fixed point
in Pﬂ(ﬁp* \Q ). Hence, from Lemma 2.7, there exists at least one positive solution of the

BVP(1), (2).

CASE 2. If f, =o,let 1>0, takeM >0such that AA,M >1. Sincelim(f (u)/u) =

w, there exists some p satisfying p >p.  such that  f(u)>Mu,u> o
SetQp* ={ye P:||y|< o'} As before, we get

Ty =2 max [3 Kt 9)a () () + L k(t ) F (1]

> AuM p’ max D k(t,s)a'(s)f(y)=AAMp = p = y|, and the proof proceeds as

te[ s=bp
before. The proof of Theorem 3.1 is completed.

Theorem 3.2. Assume that conditions (H,)~ (H,) are satisfied, and A,f_<A,f,. Then for
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all A satisfying
1 1
, 12
A, f, A,f, (12)

there exists at least one positive solution of the BVP(1), (2), which belongs to P. Moreover, in the
case where f is sublinear, then as shown in Eq.12. becomes 0< A < .

Proof. Atfirst, for f,=Iim  (f (u)/u), we consider two cases.
CASE 1. If f; <oo. Set ¢ >0suchthat 0<1/A,(f,—¢) <A, Since
f, =lim(f(u)/u), there exists a positive constant p, such that

fu)=(f,—e)u, forO<u< p.. (13)
SetQ, ={yePyl<p}.ForanyyeoQ (P,by Lemma 2.2, we get
Yy, > ullyll=up, for te[bp,z],then as shown in Eq.5.,13., we have

||Ty||:/1t€rgg%>+<l][ik(t,s)a*(s)f(ys)+zn:k(t,s)a(s)f ()]

> 1 max Zk(t s)a’ (s) f (y,) 2 2 max Zk(t s)a’(s) f(y,)

tef0n+1]4 te[0,n+

2 Au(fy —&)p. max Zk(t s)a’(s) = A (fo—&) o = p =l Y,

sbp
this is
[Tullull, forye PNoQ,. (14)
CASE 2. If f;=o0,let >0, and take M >0 such that AA;M >1. Since Iirp(f (u)/u) = oo, there

exists a positive constant p, such that f (u) > Mu, for 0 <u <
p.. Set Q. ={yePiylk< o }. As before, we have

1Ty lI= /’tter[rgggg][ik(t, s)a’(s) f(ys)+ ik(t, s)a(s) f (y.)]

> AuM p, ter[rm];bpk(t,s)a*(s) f(y)=AAMp. 2 p. =y,
hence, Eq.14. holds too.
Next, let &>0 such that 0<A<1/A,(f +¢). Since f_ =lim, _(f(u)/u), there exists
some p satisfying p > p. such that
f(u)<(f, +&)u, foru>p. (15)
Now, there are two cases to consider too. They are f is unbounded and bounded. If f is unbounded.
Since f is continuous, we know that there is a positive constant p"and p” > p such that

fu)< f(p), foruel0,p]. (16)
Since p” > p, then as shown in Eq.15.,16., we obtain
fuy<f(p)<(f,+e)p uel0,p’]. (17)

ForyeP,||y|= o, from as shown in Eq.4.,17., we have
n p n
(Ty), = 2D _k(t,8)a(s) f(y,) =D _k(t,5)a’(s) f (y,) - 2D _k(t,s)a () (y,)
s=1 s=1 s=p

<A K(9)a (9) T (y,) < 2,1, +2)p" < p <y .

s=1
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If f is bounded, then there exists a positive constantL, such that f (u)<L.In the case f =0.
Take p” > max{L, /¢, po},forye P, || y|= o", as shown in Eq.5, one has

(1), = 23K (1) = AL KL (9 (v) - 22 K(t S (9 ()

p
<AYK(LS)a"(8)F(y,) <AL <AAe0 < p =y ]

s=1
Hence, in either case, setting Qp* ={y e P:||y|< o}, we always have

Tyl yll, for ye PNoQ .. (18)
Therefore, as shown in Eqg.14., 18., and Theorem 1.1, it follows that T has a fixed point

PNQ .\ _ . .
in N ot ) Hence, from Lemma 2.7, there exists at least one positive solution of the BVP
(1), (2). The proof of Theorem 3.2 is completed.

Example

In this section, we will give an example is to illustrate our main results.
Example 4.1 . Consider the boundary value problem

A%y, , +§a(t) f(y,)=0, te[110],

1 (19)
Yo =0, Eyfs:yll’
1 ) 20(t—6)*,0<t <6, 3
where n=10,p=6,b==,1=—, anda(t)=4 3 . then we have bp=3A=—.
2 3 —(6-1t)°,6<t<1], 20
20
Now takingz =4, we get o :%. Let
2
—(t-5)"+25, 0<t<6, 99u? 2
Y, =412 and f(u)= + :
2—5('[ ~11)? +12,6 <t <11, 1+2625u 2625
Then, by calculation, we have
f, = 2 = 8 A = 825,/\2 = 2625,thus, we havel=A,f, <A, f, =@, and
2625 875 4 35
66 1 2 1 .
—= <A=—=< =1.By Theorem 3.1, we have the BVP (19) has at least one positive
35 A f, 3 A,f,
solution.
Summary

Assume that conditions (H,) ~ (H,) are satisfied. When A, f, < A, f_, then for all A satisfying

Alf <A< Alf , there exists at least one positive solution of the BVP(1), (2), which belongs to P.
1" 2°0

Moreover, in the case where f is superlinear, then as shown in Eq.7 becomes0< A <o0; When

<A<
1°0 2 o
of the BVP(1), (2), which belongs to P. Moreover, in the case where f is sublinear, then as shown in

A, f_ <A f, then forall Asatisfying , there exists at least one positive solution
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Eqg.12. becomes 0 < A < o are obtained.
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