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Abstract: With the continuous development of smart grid, a large number of generalized demand-side resources 

such as controllable load, energy storage and distributed power generation are accessed, which changes the 

characteristics of load and increases the difficulty of load forecasting. In order to improve the accuracy of load 

forecasting, this paper proposes a short-term load forecasting method of LSTM-SVR considering generalized 

demand-side resources. Firstly, according to the load aggregator, the mechanism of generalized demand-side 

resources participating in the power market is determined, a contract-based generalized demand-side resource 

scheduling model is constructed, and the optimal dispatching plan is solved according to this model. Secondly, the 

LSTM-SVR combined forecasting method is used to establish a short-term load forecasting model with the optimal 

scheduling plan as the input. Finally, a case analysis is carried out, and the feasibility of the LSTM-SVR prediction 

method considering generalized demand-side resources is verified by comparison with other models. 

Keywords Short-term load forecasting; Broad demand-side resources; LSTM-SVR; Error correction; Load 

aggregator 

INTRODUCTION 

Short-term load forecasting is of great significance 

for economic dispatch, optimal combination of units, 

optimal power flow, and power market trading. Its 

biggest feature is that it has obvious periodicity, 

which is mainly manifested in the similarity of the 

overall change law of 24 hours between different days, 

the similarity of working days or rest days, and the 

similarity of the load curves of major holidays in 

different years. Accurate load forecasting is 

conducive to improving the utilization rate of power 

generation equipment and the economy of dispatching, 

and maintaining the safety and stability of power grid 

operation [Jia Hongjie, et al., 2015]. Generalized 

demand-side resources such as controllable load, 

distributed power and energy storage in the smart grid 

respond to demand in flexible and diverse ways, 

which enhances load transfer capacity and a wider 

transferable time range [Wu Jianzhong, et al., 2016]. 

In the power market environment, users take 

electricity economy as the goal, reasonably adjust 

controllable load, distributed power source and energy 

storage resources according to different price signals 

and incentive mechanisms, and change load 

characteristics and change laws [Rastegar M, et al., 

2016]. Therefore, short-term load forecasting 

considers generalized demand-side resources to 

improve load forecasting accuracy. 

The ideas of short-term load forecasting include 

normal daily forecasting based on time series analysis, 

short-term load forecasting that directly considers 

related factors, short-term load forecasting after 

normalization of related factors, and probabilistic 

short-term load forecasting. With the continuous 

development of computer technology, the algorithms 

of short-term load forecasting have been optimized 

from early regression analysis methods and time 

series methods to intelligent algorithms such as 

artificial neural networks and ensemble learning, 

which greatly improves the efficiency and accuracy of 

short-term load forecasting. For example, support 

vector machines, long short-term memory neural 

networks, and random forests have obvious 

advantages in processing nonlinear data. There is 

always a random factor in the load, so there is no way 

to avoid errors in the prediction results of the model. 

By analyzing the residual between the predicted and 

true values of the model, modeling the residual series 

to correct the load forecast is an effective means. It 

has proven its effectiveness in a variety of predictions 

such as temperature, wind speed, wind power and 

photovoltaic power [Kang Chongqing, et al., 2017]. 

Generalized demand-side resources such as 

controllable load, distributed power and energy 

storage are widely connected and participate in the 

power market, and their scheduling flexibility will 

inevitably affect the change of electricity load. 

Therefore, this paper first constructs a contract-based 

optimal scheduling model for generalized demand-

side resources for three controllable resources: load 

curtailment (LC)， load shift (LS) and interruptible 

load (IL). The model aims to maximize the return of 

load aggregator (LA), and solves the optimal 

dispatching strategy of generalized demand-side 

resources participating in the power market according 

to the real-time electricity price under the constraints 

of the contract. Based on this, the LSTM-SVR load 

forecasting model is introduced, and the optimal 
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scheduling plan of generalized demand-side resources is taken as the input quantity, and a comprehensive 

load forecasting method based on the optimal 

scheduling plan of generalized demand-side resources 

is proposed, and an example is verified. 

The main contributions of this paper are 

summarized as follows. 

(Ⅰ) This paper takes the benefits of aggregators as 

the biggest goal, and solves the optimal dispatching 

strategy for generalized demand-side resources to 

participate in the power market based on real-time 

electricity prices. 

(Ⅱ) Compared with the traditional load forecasting 

method, this paper considers the generalized demand-

side resources as the input of the forecasting model, 

which effectively reduces the peak-valley difference 

of the load. 

(Ⅲ) Based on the LSTM prediction model, SVR 

is used to correct the error and improve the prediction 

accuracy. 

Section II proposes a contract-based generalized 

demand-side scheduling model, including a 

transferable load contract model and a reducible load 

contract model. Section III proposes a load 

forecasting model based on LSTM-SVR, uses SVR to 

correct the error of LSTM, and gives the input amount 

of the prediction model. Section IV. is the analysis of 

the actual example, first solving the scheduling model, 

and then carrying out load forecasting, which shows 

the superiority of this method through a variety of 

comparisons. Finally, the full text is summarized in 

Part Ⅴ. 

GENERALIZED DEMAND-SIDE SCHEDULING 

MODEL BASED ON CONTRACT 

LA acts as an intermediary that can integrate user 

demand response resources and introduce them into 

market transactions. With the help and guidance of 

LA, small and medium-sized power users can form a 

scientific way of electricity consumption and improve 

the power efficiency of terminal equipment. The 

operation mechanism of LA is shown in Figure 1. 

Generalized demand-side resources

Controllable load 
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Energy storage resources Distributed power

Electricity market

Load aggregator LA

Load Curtailment, load 

shift and interruptible 

load, etc

Static energy storage 

devices and removable 
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Figure 1. The operating mechanism of LA 

In order to guide users to better participate in 

market regulation, this section proposes a contract-

based generalized demand-side resource scheduling 

model from the perspective of LA. LA can enter into 

different contracts with users based on factors such as 

electricity prices and electricity consumption 

characteristics in the area where the aggregated 

electricity users are located. Among them, the 

differences in contracts are mainly reflected in the 

design of agreed price, response volume and response 

period. According to the difference between the real-

time electricity price in the electricity market and the 

price agreed in the contract, the goal is to maximize 

the income, and the optimal dispatch plan of LC, LS 

and IL is determined under the provisions of the 

contract content, and the user is guided to reasonably 

arrange the power consumption time to achieve the 

role of peak shaving and valley filling. 

Load curtailment contract model 

Load curtailment generally refers to a load that can 

be reduced to some extent as needed. LA enters into 

executable LC contracts with small and medium-sized 

households, and arranges the optimal period for load 

reduction according to the difference between the 

contracted price and the real-time electricity price in 

the electricity market, so as to obtain maximum profit 

and achieve peak shaving efficiency. The objective 

function of the LC contract model is: 

( )max LC LC

t t t

t T

L C


−                   (1) 

Where， t is the real-time electricity price in the 

electricity market, 
LC

tL  is the total load reduction of 

LC at time t, 
LC

tC is the total cost of the LC contract at 

time t, andT  is the number of time series in a day. 

The function for 
LC

tL  and 
LC

tC  is as follows: 

LC

LC LC LC

t k kt

k N

L q u


=                       (2) 

( )IC
LC

LC LC LC LC LC LC

t k kt k k kt

k N

C y c q u


= +      (3) 

Where, 
LC

kq 、
LC

kIC and 
LC

kc are the load reduction 

amount, start-up cost and price specified in the k-th 

LC contract, and 
LC

ktu  is the load reduction status 

index. When the k-th LC contract is executed at time t, 

1LC

ktu =  otherwise, 0LC

ktu = . 
LC

kty  is the LC contract 

start-up index, When the k-th LC contract is activated 

at time t, 1LC

kty = , otherwise, 0LC

kty = . LCN  is the 

contract quantity. The contract is subject to: 
min LC
kt+D 1

LC min,u      , ,LC LC

kt k kt

t t

D y k t
−



=

 
，

      (4) 

max, 1

     , ,

LC
kt D

LC LC

kt kt

t t

z y k t
+ −



=

            (5) 
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     , ,LC LC

kt k

t T

y MN k t


           (6) 

( )1
     , ,LC LC LC LC

kt kt kt k t
y z u u k t

−
− = −      (7) 

1     , ,LC LC

kt kty z k t+              (8) 

Where, 
min,LC

kD  and 
max,LC

kD  are the minimum and 

maximum duration of the contract, respectively. 
LC

kMN  is the maximum number of contract executions 

per day, 
LC

ktz  is the contract stop indicator. When the 

kth LC contract stops at time t, 1LC

ktz = , otherwise, 

0LC

ktz = . It can be seen that constraints (4) - (6) are 

the limits of the minimum duration, maximum 

duration and maximum number of daily contract 

executions, respectively, and constraint (7) controls 

the contract start-stop index. Constraint (8) ensures 

that 
LC

kty  and 
LC

ktz  are not 1s at the same time. 

Load shift contract model 

Load shift usually refers to the constant total 

electricity consumption during a dispatch cycle. 

Loads that can be flexibly adjusted for electricity 

consumption at different times. LA acts as a shift to 

fill valleys by guiding customers to shift electricity 

consumption from the contracted period of load 

reduction to the period of load increase. It can be 

expressed as: 

( )max LLS LS

t t t

t T

C


−                 (9) 

 
LS

LS LS LS

t k kt

k N

L q u


=                   (10) 

( )
LS

LS LS LS LS LS LS

t k kt k k kt

k N

C IC y c q u


= +    (11) 

T

0,LS LS

kt kt

t

q k


=                 (12)   

Equation (12) is the constraint of change before and 

after transferable load scheduling, where 
LS

kt  

represents the transfer direction of the load at time t, 

1LS

kt = −  indicates that the load is transferred out at 

this time, 0LS

kt =  indicates that there is no transfer 

load at this time, and 1LS

kt =  indicates that the load 

is transferred in at this time. The contract is subject to: 
min,D 1

min, , ,

LS
kt

LS LS LS

kt k kt

t t

u D y k t
+ −



=

          (13) 

max, 1

, ,

LS
kt D

LS LS

kt kt

t t

z y k t
+ −



=

          (14) 

,LS LS

kt k

t T

y MN k


         (15) 

( )1
, ,LS LS LS LS

kt kt kt k t
y z u u k t

−
− = −     (16) 

1 , ,LS LS

kt kty z k t+                 (17) 

0 ,LS LS

kt ku t T=                     (18) 

Where,
LS

kT  is the load transfer time period, 

constraint (18) restricts the execution of the LS 

contract during 
LS

kT , and variables and constraints 

such as 
LS

tL , 
LS

tC , 
LS

kq , 
LS

kIC  and 
LS

kc  are similar to 

the LC model. 

Interruptible load contract model 

The load aggregator revenue for interruptible loads 

is the sum of the interruption compensation received 

from the grid, additional subsidies and project 

management fees paid by users. The cumulative 

maximum return of the l-th aggregator as an objective 

function: 

1

max ( )

1,2, ,

l

T

LAlm eLAlm xulim

m i

a Q B C

l N

= 

 + +

= 

 
  (19) 

Where, a is the interruption compensation price of 

the power grid to the aggregator; LAlmQ , eLAlmB  are 

the power outage in the m-th year of the l-th 

aggregator and the upfront subsidy paid to the user, 

l

LAlm lim uli

i

Q t P


 =  , 
l

eLAlm eim

i

B B


= ; xulimC   

The project management fee paid for the m-th year 

of the i-th user managed by the lth aggregator is 

usually higher than LAlimC . 

Considering that the load aggregator, as an 

intermediary, should ensure that the maximum 

interruptible resources are called, it is proposed that 

according to the signing of the contract with the user, 

the following constraints need to be met when signing 

the contract with the power grid, that is, the interrupt 

capacity is less than or equal to the total capacity of 

the user that can be interrupted, the total electricity 

consumption is less than or equal to the total power 

consumption of the user, and the total interruption 

time is less than or equal to the total interruption time 

of the user's participation in the user: 

,

1

n
IL d

t ui

i

L P
=

                          (20) 

,

1

n
IL d

t LA LA ui ui

i

L k t P t
=

           (21) 

1

n

LA LA ui

i

t k t
=

                     (22) 

Where, , LAk , and LAt  are the interrupt capacity, 

the number of interruptions, and the number of hours 

of interruption in the contract signed between the load 
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aggregator and the power grid; n is the number of 

users who have signed contracts with the load 

aggregator; uiP  and uit  are the interrupt capacity of 

the i-th user and the total time of participating in the 

outage in the year, respectively. 

LOAD FORECASTING MODEL BASED ON LSTM-SVR 

Long short-term memory neural networks 

LSTM belongs to a variant of recurrent neural 

networks. Compared with the long-term dependence 

problem of traditional RNN, LSTM adds gates in each 

cell state on the basis of RNN to control whether 

information is retained, which improves the problem 

that RNN cannot have long sequences. At present, 

LSTM is popularized in the processing of long 

sequences. 

Each cell of LSTM has three parts: forgetting gate, 

output gate and input gate, which determine the 

filtering, preservation and generation of information, 

respectively, and the complete structure is shown in 

Figure 2[Wang Ke, et al., 2014]. 

 tanh

t-1C

t-1h

tx

tC

th

ty

tf ti
tC

tQ

LSTM unit



tanh



 
Fig.2 Structure unit of LSTM 

The working steps of LSTM are as follows: 

Step 1: Determine the information that needs to be 

filtered in the original load sequence through the 

forgetting gate. The current input and the previous 

moment input are filtered through the Sigmoid 

function. 

( )1,t f t t ff W h x b −
 = +        

(23) 

Step 2: Enter the information to decide the reserved 

part through the Sigmoid function. tx  and 1th −  are 

updated by the tanh function to become newly 

generated information cell state value 
tC . The 

previous cell state is then updated to the current cell 

state value of tC . 

( )1,t i t t ii W h x b −= +                 (24) 

( )1tanh ,t C t t CC W h x b−= +        
(25) 

1t t t t tC f C i C−= +
          

(26) 

Step 3: First, the Sigmoid function determines the 

output part of the unit, and then the predicted value 

point of the model is obtained by multiplying the unit 

state by tanh  and the gate output state. 

( )1,t t tW h x b   −= +         
(27) 

tanht t th C=                       (28) 

Where, ( )1,t th x−  is the splicing vector of the 

current input tx  and the previous input 1th − ; fW , iW , 

CW , oW  and fb , ib , Cb , ob  are matrix weights and 

bias vectors for forgetting gate tf , input gate ti , newly 

generated information cell state 
tC , and output gate 

to , respectively. 

Support vector regression 

     SVR is an efficient machine learning algorithm for 

solving regression problems, the essence of which is 

to find the optimal hyperplane to model, and 

minimize the "total deviation" between all sample 

points and the regression curve for a given prediction 

error set ( ),n nx y . where 
nx  is the input load error 

value and 
ny  is the predicted load forecast. Thus, the 

SVR problem translates to: 

2

,
1

1 ˆmin
2

N

n n
b

n

C


  
=

+ +             (29) 

Where,   is the weight value; b  is the bias vector; 

C  is the penalty parameter; n  and ˆ
n  are relaxation 

variables. 

The corresponding constraints are: 

( )

( ) n
ˆ

ˆ0, 0, 1,2, ,

n n n

n n

n n

f x y

y f x

n N

 

 

 

−  +


−  +


  = 

       (30) 

Where ,   is the regression bias. 

LSTM-SVR combination model 

The steps are described as follows: (1) process the 

raw load data, fill in the missing values and handle the 

outliers, and construct the three-dimensional array 

required for LSTM; (2) The three-dimensional array 

is standardized and fed into the LSTM network for 

training and prediction of the LSTM network, 

resulting in a set of predicted values; (3) The 

predicted result is processed with the original data to 

find the error term; (4) The error term is regression 

prediction by using the constructed SVR model, that 

is, the error term is corrected by SVR to obtain a new 

set of corrected error terms; (5) The results predicted 

by LSTM and the corrected error terms are combined 

and added to obtain the results predicted by the final 
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combination model. The flowchart of the LSTM-SVR 

algorithm is shown in Figure 3. 

Load data 

preprocessing

Begin

LSTM prediction value Error term

SVR error correction

Combine predicted 

values

Stop 

-

+

 

Figure 3 LSTM-SVR flowchart 

Consider a load forecasting model for generalized 

demand-side resources 

In the traditional load forecasting model, the load 

influencing factors include only temperature, 

humidity, day type, weather conditions, and historical 

loads. Due to the continuity and similarity of power 

loads, taking the load of t-th time on the d-th day as 

an example, the input quantity of the traditional load 

forecasting model in this paper is shown in Table 1. 
Table 1. Input of traditional load forecasting model 

Historical load Weather and day type 

1 1 2 1 2

1 1 1

2 7 7 7

1 1 1

, , , ,

, , ,

d d d d d

t t t t t

d d d d

t t t t

L L L L L

L L L L

− − − − −

− − +

− − − −

+ − +

 
max min, ,

, , ,

d d d

ave

d d d d

t t

T T T

T H g w
 

In Table 1, the superscript d and subscript t 

represent the date and time point respectively, and 
1

1

d

tL −

−  is the load value of the time before the forecast 

day; max

dL , 
d

aveL  and min

dL  are the highest, average and 

lowest temperature of d-th day, 
d

tT  and 
d

tH  are the 

temperature and humidity of time on the d-th day, and 
dg  is the weather condition of d-th day. 

dw  is the 

day type of the d-th day. 

In the load prediction model proposed in this paper, 

the main influencing factors of the output of 

photovoltaic and fan are light intensity and wind 

speed. 

In order to improve the accuracy of load 

forecasting, the optimal scheduling scheme of 

electricity price, light intensity and wind speed 

affecting the output of photovoltaic and wind turbines, 

and the optimal scheduling scheme of load 

curtailment, load shift and interruptible load at each 

time of the day in the training set and test set 

according to the formulas (1) - (22) are used as the 

new input of the prediction model. 

Among them, the load curtailment, load shift and 

interruptible load amount at the time of t-th day are 

,LC d

tL , 
,LS d

tL  and 
,IL d

tL ,and the light intensity, wind 

speed and real-time electricity price at time of t-th day 

are 
d

tI , 
d

tW  and
d

tP , respectively, as shown in Table 

2. 
Table 2 Input of load forecasting model considering generalized 

demand-side resources 

Historical load 
Weather and 

day type 

Generalized 

demand-side 

resources 

1 1 2

1 1

1 2 2

1 1

7 7 7

1 1

, ,

, ,

, ,

d d d

t t t

d d d

t t t

d d d

t t t

L L L

L L L

L L L

− − −

− −

− − −

+ +

− − −

− +

 

max min, ,

, , ,

d d d

ave

d d d d

t t

T T T

T H g 
 

, ,

,

, ,

,

d d d

t t t

LC d LS d

t t

IL d

t

I W P

L L

L

 

In order to prove the influence of generalized 

demand-side resources on the accuracy of load 

forecasting, this paper compares the forecasting 

models before and after considering generalized 

demand-side resources by using the two influencing 

factors in Table 1 and Table 2 to form the input 

quantities of the LSTM-SVR load forecasting model. 

EXAMPLE ANALYSIS 

In this example, the actual load data, real-time 

electricity price data and weather data of the Belgian 

power grid from March to April 2023 were selected 

for simulation analysis. Weather data sources include 

temperature, humidity, weather conditions, light 

intensity, and wind speed. 

Solve the generalized demand-side resource 

scheduling model of the contract 

Since the peak period of load in this area is usually 

3~6h, the maximum and minimum reduction time of 

load is determined by this; According to the load 

curve of typical days in each season, the peak load 

period and valley period of the region can be obtained, 

so as to determine the transfer period and the 

transferred period. The capacity of the contract should 

be determined based on the user-controllable capacity, 

but due to the lack of specific data on the user-

controllable capacity in this region, the capacity value 

shown in Table 2 is used in this example. The daily 

load curve in summer has a clear load peak, so 3 LC 

contracts and LS contracts are designed respectively, 

and load reduction is carried out at the peak of the 

load, and part of the load is transferred to other 

periods; There are morning peaks and evening peaks 

on typical days in winter, but the difference between 

peaks and valleys is not large, and the two peak 

periods in one day can be reduced and transferred 

with 3 LC contracts and LS contracts, and the 

compensation price is lower than that of summer 

contracts; In spring and autumn, the fluctuation of 

electricity load is small, and the load level is basically 

similar and low, so two LC contracts and LS contracts 
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are designed respectively, and the compensation price 

is the lowest. The LC contract parameters are shown 

in Table 3. The parameters of each LS contract are the 

same as those of the LC contract, and the three 

parameters added to the LC contract are shown in 

Table 4. At the same time, assume that the maximum 

number of executions per day for all contracts is 1. 

The IL contract parameters are shown in Table 5. 
 

Table 3 LC Contract Contents 

Season Contract Capacity/MW Price/($/MW) Start-up price/$ 
Minimum 

cut-off time/h 

Maximum cut 

time/h 

Summer 

1 15 40 100 3 6 

2 15 45 100 3 6 

3 15 50 100 3 6 

Winter 

1 15 35 100 3 6 

2 15 40 100 3 6 

3 15 45 100 3 6 

Spring and 

autumn 

1 10 25 100 3 6 

2 10 30 100 3 6 

 

Table 4 LS Contract Contents 

Season Contract Transfer window The period of being transferred Transfer rate 

Summer 

1 10~16 4~10 100 

2 14~20 8~14 100 

3 16~22 10~16 100 

Winter 

1 7~13 2~7 100 

2 13~19 19~24 100 

3 16~22 11~16 100 

Spring and 

autumn 

1 5~11 11~17 100 

2 17~23 2~8 100 

 
Table 5 IL Contract Contents 

ILContract  

model 

The amount of 

interruption/ 

MW 

Compensation 

price/ 

（MW·h） 

One lasts the longest time/ 

h 

Cumulative maximum/ 

h 

1 10 60 2 4 

2 10 80 3 5 

3 18 100 3 8 

For the MILP problem in the second section, this 

paper uses the Yalmip optimization toolbox to solve it, 

and if the load reduction is positive and the load 

increase is negative, the optimal scheduling scheme of  

generalized demand-side resources based on contracts 

under the real-time electricity price on July 1 in the 

region is shown in Figure 4, Figure 5 and Figure 6. 
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Figure 4. LS optimal scheduling scheme 

The LS contract transfer capacity is shown in 

Figure 4. The first LS contract responds within the 

12~16 period and lasts for 5h, which is due to the 

specified transfer period of 10~16 period, and the 

electricity price of period 11 is lower than the 

compensation electricity price; The response time of 

contract 2 is 14~19 periods, which does not exceed 

the maximum response time specified in the contract; 

Contract 3 only responds within the 16~18 period and 

lasts for 3h, although the electricity price in the 14th 

and 15th periods is also higher than the compensation 

electricity price of Contract 3, but it does not meet the 

specified response time, so it does not respond. 
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Figure 5. LC optimal scheduling scheme 

The capacity reduction in the LC contract is 

shown in Figure 3. The first two contracts in the LC 

contract both dispatch can cut the load within the 

14~19 period for 6h, which does not exceed the 

maximum response time stipulated in the contract, 

while contract 3 only responds in the 14~18 period 

and lasts for 5h, which is because the electricity price 

in the 19th period is lower than the compensation 

price of contract 3, so contract 3 only responds in the 

first 5h. 
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Figure 6. IL optimal scheduling scheme 

The interruptible amount derived from the IL 

contract is shown in Figure 6. In the higher phase of 

the daily load curve, part of the IL resources are 

called. Under the condition of load IL time response 

characteristics, IL resources with lower purchase price 

are called first in the period of tight power supply, 

replacing the role of some high-priced peak-shaving 

units. 

Load forecast study 

In order to verify the effectiveness of the load 

forecasting method proposed in this paper, the load 

data needs to be simulated. The load reduction and 

load transfer obtained in Section 4.1 are the planned 

amount of demand response, while the actual response 

amount has internal instability, and the response 

strength is affected by changes in external factors 

(such as time point, meteorological conditions, 

electricity prices, etc.). The actual response load of 

the user at a certain moment is the actual impact of 

the planned response load at this moment, 

superimposed on the planned response load at other 

moments, and the impact amount distributed to the 

current moment after the planned response load is 

affected, and the magnitude of each external 

influencing factor at different times and the impact 

mechanism of the load are changed. Therefore, this 

paper constructs a linear time-varying model as 

follows: 

( ) ( )( ) ( )

( )( ) ( )

( )( ) ( )

( )( ) ( ) ( )

0

1

1

1 1

1 1 ,

true

p

n

DRL t a t DRL t

a t DRL t

a t p DRL t p

a t n DRL t n r t







−

= +

− − + +

− − + +

− + − + +

(26) 

Among them, ( )r t  is the zero mean independent 

and distributed random error partial load, 

( )( ) ( )pa t p DRL t p − −  is the influence of the 

planned response load on the actual response load at 

time t p− , ( )( )pa t p −  is the percentage of the 

part load to the planned response load at time t p− , 
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0,1, , 1,p n n=  −  is the number of consecutive 

moments that affect the actual response load at time t, 

and the calculation formula of ( )( )pa t p −  is as 

follows: 

( )( ) ( )( )

( )( ) ( )( )

( )( )

,0 ,1 1

,2 2 ,

, ,

p p p

p p q q

p m m

a t p a a t p

a t p a t p

a t p

 

 



− = +  − +

 − +  − + 

+  −

 (27) 

Among them, ( )t p −  is the vector of external 

influencing factors that affect the user's response at 

time t p− , ( )( )q t p −  represents the actual 

response load of each external influencing factor at 

the q-th mechanism at time t p− , ,p qa  is the weight 

of the q-th influencing mechanism at time t, and 

0,1, ,q m=  , m  is the number of influencing 

mechanisms of each external influencing factor on the 

response load. 

In this paper, model parameters are selected 

3n = , 1m = , 0,0 0.6a = , 0,1 0.01a = , 1,0 0.2a = ,

1,1 0.01a = , 2,0 0.05a = , 2,1 0.01a = , The influence 

mechanism of external factors ( )( )q t p − is as 

follows: 

( )( )
 

( )  
1

0.5 ,               0,11

0.5 12 ,   12,23

t t
t

t t


 
 = 

− 

       (28)  

The actual load data for July and August in the 

region is used as the original actual total electricity 

load without generalized demand-side resources, and 

on this basis, the optimal scheduling planning amount 

of two generalized demand-side resources, cut-load 

and transferable load, is superimposed as the 

comprehensive load to be predicted. The figure shows 

the original load of one week and the simulated 

comprehensive load curve, and it can be seen that the 

peak-to-valley difference of the comprehensive load 

curve is small after the demand response, as shown in 

Figure 7.  
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Figure 7. The curves of load before and after simulation 

Model parameter setting and SVR error correction 

The normalized data is divided into training and 

test sets to construct the LSTM load forecasting 

model. The number of hidden layers of LSTM affects 

the prediction accuracy of the model. When the 

number of hidden layers is large, the better the 

prediction effect; When the number of layers is small, 

the training time is correspondingly shorter. 

Experiments have proved that when the number of 

hidden layers is set to 3, it can ensure that the training 

time is less and the accuracy is better. The network 

training algorithm selects the ADMA algorithm, the 

number of training rounds is 150 times, the initial 

learning rate is set to 0.005, and the learning rate is 

reduced by multiplying by the attenuation factor of 

0.2 after 100 training sessions. The output layer uses a 

fully connected layer, and the output values are 

reversely normalized to obtain prediction results, as 

shown in Figure 8. 
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Figure 8. Comparison of prediction effects of different models 

Error correction often requires the establishment of 

slave predictors to predict error sequences. The 

predicted residual series is superimposed with the 

initial prediction result to obtain the corrected 

prediction result. It indicates that the error correction 

model of SVR can improve the overall load prediction 

accuracy. 

Combined with Table 5 and Figure 7, it can be seen 

that a single LSTM model will cause gradient 

vanishing due to its long sequence length, and the 

prediction results are obviously insufficient compared 

with LSTM-SVR. RMSE values, MAPE values and 

MAE values decreased by 8.02%, 9.71% and 12.03%, 

respectively, and the data fitting degree 2R  increased 

to 97.12%, which proved that LSTM-SVR with error 

correction can effectively improve the accuracy of 

short-term load forecasting. After considering the 

generalized demand-side resources, the RMSE value, 

MAPE value and MAE value decreased by 24.18%, 

48.09% and 38.35%, respectively, and the data fitting 

degree 2R  increased to 98.97%, which proved that 

the LSTM-SVR load forecasting method considering 

generalized demand-side resources proposed in this 

paper has a good prediction effect. 
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Table 6 Predictive evaluation indicators of different models 

Model RMSE/MW MAPE/% MAE/MW 2R  

LSTM 49.8167 1.2568 35.8471 0.9653 

LSTM-SVR without considering generalized demand side 

resources  45.8214 1.1348 31.5356 0.9712 

LSTM-SVR considering generalized demand side resources  34.7365 0.5891 19.4435 0.9897 

CONCLUSION 

In this paper, a short-term load forecasting method 

of LSTM-SVR considering generalized demand-side 

resources is proposed. This method introduces 

generalized demand-side resources into market 

transactions through load aggregators, constructs a 

contract-based generalized demand-side resource 

scheduling model, and obtains the optimal scheduling 

scheme. Then, taking the optimal scheduling plan as 

the input quantity of the load forecasting model, an 

LSTM-SVR short-term load forecasting model 

considering generalized demand-side resources is 

constructed, and compared with the LSTM-based 

forecasting model and the LSTM-SVR forecasting 

model without considering generalized demand-side 

resources. The example verification shows that the 

load forecasting method considering the demand-side 

resources can effectively improve the accuracy of the 

forecast model. The proposed method is innovative, 

providing new methods and ideas for load forecasting. 

However, there are still the following shortcomings in 

this work: since this paper aims to predict the total 

amount of electricity load, the system topology and 

load distribution are not considered for the time being; 

Generalized demand-side resources include 

controllable load, distributed power and energy 

storage, etc., and this paper mainly considers the load 

curtailment, load shift and interruptible load in the 

controllable load, and not considers the influence of 

other factors. 
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