
Journal of Applied Science and Engineering Innovation Vol.2 No.2 2015

ISSN (Print): 2331-9062

ISSN (Online): 2331-9070

Corresponding Author: Changlin He, Information Technology Service Center, Hexi University, Zhangye 734000, China.

50

Survey on NoSQL Database Technology

Changlin He
1

1 Information Technology Service Center of Hexi University, Gansu Zhangye 734000, China

Abstract: As one of the products of the big data era, NoSQL data base is used to solve the problem of the storage
and process of the data. Intending to give references to NoSQL data base user, this paper discusses the theoretical

basis and classification of NoSQL based on the introduction of the emergence and the development of database

from Relational to NoSQL and the analysis of its limitations of the relational database in the very era.

Keywords NoSQL; Big data; Database; Storage systems; CAP; BASE

INTRODUCTION

Anybody and anything will leave some digital

marks in the context of the information society,

which are also called the data. Rapid progress in the

information society generates a large amount of data,

the massive increase in the data volume generates a

large amount of information, the information spawns

new applications, and the new applications lead to

new data. It is in this way that the information and the

application develop iteratively, enabling the data to

snowball. According to the statistical study that IDC

Digital World conducted in 2012
[1]

, the data size

around the world has reached the order of magnitude

of ZB in 2010, compared to 130EB in 2005, meaning

that the data volume has increased by 10 folds within

5 years. This implies that at this increment speed, the

data size around the world will reach up to 40ZB in

2020. According to the ZDNET annual technical

report Data Center 2013: Hardware Reconfiguration

and Software Definition
[2]

, China created over 0.8ZB

of data in total for 2013, which is two times as much

as that for 2012 and equal to the total amount

generated by the world in 2009. It is estimated that

China will create over 8.5ZB of data in 2020, 10

times that for 2013. The quick increase in data

volume heralds the arrival of big data era. So it is

urgent to ascertain how to store and manage the

massive amount of data in the context of big data era.

OVERVIEW OF NOSQL

There has been no strict definition of NoSQL so

far. It is a general term for the open-source,

distributed, and non-relational database techniques.

NoSQL originates from the first version of Berkeley

DB in 1991. Berkeley DB is a Hash database that

stores key/data pairs and fitted for embedded

applications that have simple data types but require

extremely fast inserting and reading speed
[3]

. NoSQL

began to flourish in 2007. Engineers from Google and

Amazon published many papers on BigTable and

Dynamo databases, describing the ideas on the novel

database they have adopted. BigTable proposed the

column storage model, demonstrating that the

persistent storage of data can be extended to

thousands of nodes
[4]

. Dynamo proposed to achieve

greater availability and extendibility via eventual

consistency
[5]

. The distributed cache system

Memcadied proved that distributed internal storage of

data can achieve greater performance
[6]

. In fact,

BigTable from Google, Dynamo from Amazon and

Memcached are the ancestors of all NoSQL databases.

Inspired by their ideas, many companies and

organizations have developed their own open-source

NoSQL databases. For example, Hypertable is an

open-source implementation of BigTable.

There are over 100 types of NoSQL databases

around the world
[7]

, and the NoSQL databases have

flourished in China since 2009.

In spite of the considerable momentum for NoSQL

growth, it is not long since its development and its

database techniques need to be further refined in

practical applications, because there are both

successful and failed NoSQL applications. In April,

2010, Twitter decided to suspend the plan to store

feed by using Cassandra as a substitute for MySQL,

on the ground that Cassandra has insufficient cases

and experiences of parallel access to mass data and

that it has to endure a period of time before the new

produce stabilizes
[8]

. Having adopted MongoDB, the

website of foursquare was down for 11 hours due to

data fragmentation and poor monitoring. The NoSQL

database products are still flawed; its architectures as

well as the operation and maintenance abilities need

to be improved in its infancy, implying that there is

still a long way to go before it can rival the relational

database.

THEORETICAL PRINCIPLES OF NOSQL

The CAP theory, BASE theory and eventual

consistency are regarded as the three theoretical

foundations for NoSQL. As for hardware costs, the

five-minute rule theatrically enables internal storage

51

of data. These principles are derived from long-term

practical applications.

CAP theory

The CAP theory was first proposed by Eric Brewer

in 2000
[9]

. The correctness of the CAP theory has

been proved by Seth Gilbert and Nancy Lynch in

2002. The CAP theory states that it is impossible for

a distributed system to provide consistency,

availability and partition-wise tolerance at the same

time, and that it can only meet two of the three

requirements at most simultaneously, as shown in

Figure 1.

Consistency Availability

Tolerance to network

Partitions

Figure 1. The CAP theory

If a distributed system has high requirements on

consistency and partition-wise tolerance, then the

user must process failed read and write due to system

unavailability. If the user chooses high availability

and partition-wise tolerance, then consistency will be

a very challenging problem and even dirty read may

occur. The traditional relational database system

chooses high availability and consistency by default,

resulting in both poor horizontal scalability and little

room for improvement. NoSQL provides a solution to

achieve a trade-off between the three choices to meet

diverse requirements.

CAP is not perfect. In practical applications, the

system designers should balance between the three

factors. For example, the relational database provides

high consistency and availability but its scalability is

poor. Some databases (e.g. Big Table, HBase,

MongoDB, Redis) are characterized by high

consistency and scalability but the availability is

dissatisfactory. Some databases (e.g. Dynamo and

Cassandra) are good at scalability and availability but

poor at consistency. Therefore, it may be necessary

for applications to combine several databases. For

some non-real-time data that is insensitive to

consistency, it can choose the system like Cassandra;

for the data highly sensitive to consistency, the

relational database is still the chief choice.

BASE

The real meaning of the BASE model
[10]

 is

Basically Available, which mainly has three aspects:

Basically Available, Soft-State and Eventual

Consistency. In practical applications, the user

usually has high expectations on transactions. For

example, the data cannot be lost, the transaction

cannot be inconsistent, and the system must be

available. But the system that can meet all user

requirements completely does not exist. The user has

to grasp an understanding of the most essential

system requirements before choosing a proper

database.

Consider the blog data. It suffices to limit

inconsistency to the order of magnitude of minutes,

because occasional inability to write has no serious

impacts on the application. But any problem with the

read operation is unaffordable. Loss of some old data

will not severely affect the application. Therefore, the

database that enables read-write separation, new-old

data separation and horizontal scalability is

recommended.

Eventual Consistency

Eventual consistency usually refers to relaxed

process, tight outcome and eventual consistency
 [11]

. It

is sometimes called soft consistency. The concept of

consistency has long been present in the computer

science. A stand-alone computer can improve its

multi-core concurrency performance via different

consistency protocols. In the cluster environment, it

can improve NoSQL’s scalability. Consistency has

many types and it can be mainly categorized into

strong consistency, causal consistency, monotone

read consistency and monotone write consistency.

NOSQL CLASSIFICATION

 The data model of the database determines the

logical organization of the data. Its query model

specifies how to retrieve and update the data. The

currently available NoSQL databases can be

classified into the column storage-oriented type, the

key/value storage type, the document storage-oriented

type and the graphic storage type.

Column-oriented orderly storage

With explosive increase in data size, the column-

oriented NoSQL database is receiving more and more

attention. The traditional relation databases store and

process the data with line as the unit. Hence, the

traditional relation databases are also called the line-

oriented database. The column-oriented database

processes and stores the data with column as the unit.

The column-oriented database is so scalable that

the increase in data size will not result in decreased

processing speed. So it is well-suited for processing

huge amount of data. For the line-oriented database,

the column-oriented database can be used for the

storage of the batch program to update the massive

amount of data. However, the idea of the column-

oriented database is different from that of the

traditional database, making it difficult to apply it to

practice. The typical examples of the column-oriented

databases include Cassandra, HBase and HyperTable.

Key/value storage

The hash table or the associative array is the

simplest type of data structure that can contain the

key/value pair. This data structure is so efficient that

52

the time complexity of its data access is O(1), thereby

gaining popularity among users. The key of the

key/value pair is unique among the set and easy to

find, so it facilitates data access. The key/value

storage-based NoSQL database is the most common

NoSQL database. It provides very fast processing

speed, but its access to data can only be performed by

querying about consistency of the key. According to

the way of data storage, this type of databases can be

classified into the temporary, permanent and hybrid

categories.

The temporary database can speed up data storage,

read and write by storing the data into the internal

storage. But once the system collapses, the data will

be lost. Furthermore, in this type of database, the data

is stored into the internal storage, so it cannot process

data whose size exceeds the internal storage capacity.

Unlike the temporary category, the permanent

database stores the data into the hard disk. Its

performance is degraded as it needs to perform I/O

operations on the hard disk while processing the data.

But its greatest advantage is that the data will not be

lost. The hybrid database combines the advantages of

the temporary and permanent key/value storage. It

first stores the data into the internal storage, and then

writes the input into the hard disk when the specified

conditions are met. This ensures the data processing

speed of the temporary database, and guarantees data

persistency by writing the data into the hard disk. The

typical examples of the key/value-based NoSQL

database systems include Redis, LevelDB, Tokyo

Cabinet, and Berkeley DB.

Document-oriented data storage system

The document-oriented database is not a document

management system. The developers who are new to

NoSQL usually confuse the document-oriented

database with the document/content management

system. The term document in the document-oriented

database refers to the loose set of key/value pairs,

usually JSON, rather than the traditional documents

and tables. The document-oriented database regards

the document as a whole, instead of partitioning the

document into many key/value pairs. This enables the

documents of different structures to be put into the

same set. The document-oriented database supports

document index, including not only primary

identifiers but also document properties. The typical

examples of the document-oriented databases include

MongoDB, CouchDB and Terrastore.

Graphic data management system

Compared with the above three types, the graphic

database and the SML data storage can also be

regarded as the NoSQL database. But among the

NoSQL products, the graphic database is somewhat

special. Its success is mainly attributed to its special

data model: unlike other models with good scalability

and performance, it stores the data in the form of the

graph. The graphic database can store nodes and

edges of the graphs and set the weights of the edges

and nodes. It also provides some graphic algorithms

and supports graphic query.

Like the document-oriented NoSQL, the bottom

layer of the graphic database has different

implementations. The bottom layers of some graphic

databases are the key/value storage, while others are

the document storage. The typical examples of the

graphic database are Neo4J, FlockDB, InfoGrid, and

HyperGraphDbs.

NoSQL Database

NoSQL database of many kinds, and each are not

identical, table 1 lists some NoSQL.

Table 1. Some NoSQL Database

Name Manufacturers Language Platform License
No

definitionSc
hema

Extensible

Column-oriented orderly storage

HBase Hadoop Java Java Apache 2.0 Y Y

Azure Tables Microsoft .Net Azure SaaS Y Y

Cassandra Apache Java Java Apache 2.0 Y Y

Hypertable Open source C++ Linux/Mac GPLv2 Y Y

SimpleDB Amazon Erlang EC2 SaaS Y Y

Document-oriented data storage system

MongoDB Open source C++ Linux/Mac/Windows Friendly AGPL Y Y

CouchDB Open source Erlang Linux Apahce 2.0 Y N

Terrastore Open source Java Java Apache 2.0 Y Y

Key/value storage

Redis Open source C Linux BSD Y Y

LevelDB Open source C Linux BSD Y Y

Tokyo
Cabinet/Tyrant

Open source C Linux/Windows LGPL Y N

Berkeley DB Open source C Linux/Mac/Windows Sleepycat License Y Y

MemchachedDB Open source C Linux/Mac/Windows BSD Y Y

Graphic data management system

Neo4J Neo Technologies Java Java AGPL/Commercial Y N

InfoGrid NetMesh Inc Java Java AGPL/Commercial N N

HyperGraphDB Kobrix Java Java LGPL N N

53

 NOSQL FRAMEWORK

Generally, the framework of the NoSQL database

can be partitioned into four layers: interface layer,

data logic model layer, data distribution layer and

data persistence layer. Each layer consists of different

interfaces and functional modules, as shown in Figure

2.

Figure 2. Framework of NoSQL

Interface layer

The interface layer is mainly responsible for

providing proper and convenient data access interface

for upper applications. The interfaces provided are far

more than those from the traditional relation

databases. Major interfaces provided by this layer

include: (a) the common REST (Representational

State Transfer), which is adopted by HBase and

CouchDB; (b) the RPC protocol Thrift from

Facebook, which is integrated into HBase and

Cassandra; (c) the MapReduce suited for processing

the large amount of data, like HBase, CouchDB and

MongoDB; (d) the Memcached-like Get/Put method,

which is adopted by Voldemort; (e) the language-

specific API, like JAVA, with MongoDB being very

good in this regard; and (f) the SQL subset. Although

“Join” is a taboo in NoSQL, it is a good idea to help

users by providing a basic SQL subset.

Data logic model layer

The data logic model layer is mainly responsible

for describing logical representation of the data.

NoSQL has greater flexibility in logical

representation than the relational database. The main

representations of this layer encompass (a) the most

common Key-Value form, which is monotonous but

has advantage in scalability; (b) the column family

which supports more complicated data than the Key-

Value form but is inferior in scalability; (c) the

document form, which originates from Lotus Notes, a

famous collaboration software from IBM. It is very

similar to Key-Value in fact, and the main difference

is that the Value only stores document data and that

the document form performs well in terms of

complicated data support and scalability. (d) The

graph form, which is not used widely. It is

customized for the graphic data, such as the relation

in the SNS applications.

Data distribution layer

The data distribution layer is mainly responsible

for defining the distribution of data. Its difference

with the relational database is that the NoSQL

database has many choices of mechanisms. These

mechanisms include: (a) the CAP mechanism for

horizontal expansion, which is supported by HBase,

MongoDB and Cassandra; (b) the mechanism for

supporting multiple data centers, ensuring that the

NOSQL database can operate stably across different

data centers, like Cassandra; and (c) the dynamic

deployment mechanism, allowing a node to be added

or deleted dynamically and smoothly in a production

cluster.

Data persistence layer

The data persistence layer is mainly responsible

for defining the forms of data storage. These forms

encompass: (a) the internal storage form, which is

fastest but may suffer data loss. Redis is a database

that supports this form. (b) The hard disk form, which

provides good data persistence but is inferior to the

internal storage form in terms of the speed.

MongoDB adopts this form. (c) The hybrid form,

which combines the advantages of the previous two

patterns, providing good speed without the possibility

of data loss. So it is regarded as the most appropriate

scheme. This form is adopted by HBase and

Cassandra. (d) Customized pluggable form, which is

famous for flexibility.

Although the framework of NoSQL can be

partitioned into four layers, it does not mean that each

product can only select one property at each layer.

Instead, it is capable of choosing multiple properties.

For example, HBase supports REST, Thrift and Map

Reduce at the interface layer. At the data distribution

layer, Cassandra supports CAP and multiple data

centers.

 CONCLUSIONS

NoSQL has received much attention from the

industry and academia because it can store a huge

amount of data, is cost-effective, flexible and scalable.

This paper first discusses the necessity of NoSQL,

completely surveys the development of NoSQL

databases, describes the three theoretical foundations

and classifications of NoSQL, and finally analyzes

the framework of NoSQL. NoSQL databases may

bring an end to the traditional relation database in the

future. But it is not long since NoSQL is born.

Instead of substituting for the traditional databases

altogether, NoSQL is only suited for some

applications. In some sense, it is just a supplement to

the traditional database. For specific system

applications, users should specify system

requirements and then choose the right database.

Therefore, there is still a long way to go to improve

NoSQL.

54

ACKNOWLEDGMENT

This work is supported by Teaching research

project of Hexi University at Zhangye (No.

HXXYJY-2014-017) and Gansu province college

graduate tutor project of the education department of

Gansu province(No. 1210-02).

REFERENCES

John Gantz and David Reinsel. The Digital Universe in
2020: Big Data, Bigger Digital Shadows, and Biggest

Growth in the Far East[R]. IDC iView, Sponsored by

EMC, December 2012.

Guangbin Zhang， Jun Pan， Zhiqiang Zeng. Data Center

2013：Hardware reconfiguration and software defined

[R]. ZDNET，Beijing，2014.1.

Vijaykumr S, Saravanakumar S. Implementation of NoSQL

for robotics[C]. Emerging Trends in Robotics and
Communication Technologies(INTERACT), 2010

International Conference on: 195-200.

Fay C, Jeffery D, Sanjay G, Wilson H, Deborah W,
Michael B, Tushar C, Andrew F, Robert G. BigTable: a

distributed storage system for structured data[J]. ACM

Trans. Comput.Syst.,2008(26).

Giuseppe D, Deniz H, Madan J, Gunavardhan K, Avinash
L, Alex P, Swaminathan S, Peter V, Werner V. Dynamo:

Amazon's highly available key-value store[J]. ACM,
2007, 205-220.

Petrovic J. Using Memcached for data distribution in

industrial environment[C]. Syatems,2008,ICONS
08,IEEE Third International Conference on:368-372.

Jose J, Subramoni H, Miao L, Minjia Z, Jian H, Wasiur M.

Memcached design on high performance RDMA capable
interconnects[C]. Parallel Processing(ICPP), 2011 IEEE

International Conference on:743-752.

Becker M.Y, Sewell P. Cassandra:flexible trust

management, applied to electronic health records[C].
Computer Security Foundations Workshop,2004

Proceedings. 17th IEEE: 139-154.

Julian Browne. Brewer’s CAP Theorem. 2009.
http://www.julianbrowne.com/article/viewer/brewers-

cap-theorem.

John D. Cook. ACID versus BASE for database
transactions. 2009.

http://www.johndcook.com/blog/2009/07/06/brewer-

cap-theorem-base/

Werner Vogels. Eventually Consistent[J].
Queue,2008,6(6):14-19.

Baoyao Zhou, Wei Liu and Chenggong Fan. Big Data——

Strategic technology and Practice [M]. Beijing ：

Publishing House of Electronics Industry，2013:88.

