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Abstract: According to the Stochastic Einstein field equation and the Langevin equation of fluctuation Path, we 

give the Langevin equation with gravitational noise，which describes the star-Brownian motion in stochastic 

curved space. By using the corresponding Brownian bridge path integral，we have derived the star wave function 
in stochastic curved space. 
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INTRODUCTION 

According to the Langevin equation of fluctuation 

path [1] ，we had given the Langevin equation with 

quantum noise [3] ，which describes the quantum-

Brownian motion of a free particle, which has the 

diffusion coefficient  ,
2

QD
m


h

and which is generated 

by the quantum fluctuation of virtual particles in 

vacuum. By using the corresponding Brownian 
bridge path integral, we obtain the wave function of a 

free particle. 

    In this paper, we give the Langevin equation with 
gravitational noise, which describes the star-

Brownian motion in stochastic curved space, we have 

proven that the corresponding diffusion coefficient is 

;G

MG
D

C
 and by using the corresponding Brownian 

bridge path integral of a star moving in stochastic 

curved space, which shows that any star moving in 

stochastic curved space have also the wave-star 
dualism, which is similar to the wave-particle 

dualism. 

I. The Langevin Equation with Gravitational 
Noise 
    It is known that the singular point as field source 

in non-linear Einstein field equation  haven't  
independent motion equation .By using Bianchi 

identity and Einstein field equation.  

1
8 ,

2
G g kT                        (1) 

  Go through  lots of calculations, Einstein and In 

field [11] obtain the motion equation of the singular 

point as field source 

   

1 2
1 .. 1 1

, ( ( ))
m m

m m
r

   
 
   
 
 

                  (2)           

  Which is Newton motion equation only relating to 

the differentiation of position function 
1

( ),
r

 where the 

space coordinates ( )
k
m   represent the position(at any 

time) of mass point ( 1,2, , ),
k

m k p r L represents the

“ distance” between the coordinates 
1

s  and 
2

s , 

where 
1

s and 
2

s represent two radiuses of two 

infinitesimal spheres, which respectively contain 

mass points 
1

m  and 
2

m .We had extended Einstein field 

equation into stochastic Einstein field equation [9]    

                           (3) 

  Which describes that the stochastic matter source 
leads to the stochastic property of space-time.   

According to the stochastic Einstein field equation(3),  

considering the conservation of total energy-

momentum of the mass point and the gravitational 
field, we have 

;( )( ) 0,ik ik

kg t                      (4a) 

all the energy-momentum tensors 
ik i kv v  and 

ikt are the stochastic variables, we may rewrite (4a) 

as  ; ;( ) 0,i k ik

k kv v t                        (4b) 

or         ; ; ;( ) .i k k i ik

k k kv v v v t             (4c) 

    Because the conservation of mass 

0( ( )),m r r     the first term is equal to zero, 

therefore we obtain 

; ;

1 1
,k i ik i

k kt F 
 

   
      

   
         (5) 

   Which is the stochastic motion equation of any 

mass point (or any star) moving in stochastic 

gravitational field (or stochastic curved space), where 
F should be the stochastic exchange force, since 
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ikt and ;

ik

kt  are stochastic variables. And 
i

i dp
F

dt
  is 

generated by the stochastic change of the stochastic 

momentum 
ip  on the boundary between mass point 

and the stochastic gravitational field. Equation (5) 

shows that iF  must be existent, even if there is 
without the other outside field. Under the action of 

iF  a mass point moving along some geodesic line 
will stochastically jump to another geodesic line, and 

form the probability distribution. Therefore we may 

rewrite equation (5) into the Langevin equation with 

gravitational noise :( )i

GP P t . 

  Equation (6) describes the star-Brownian motion in 
the stochastic curved space, for example, the 

Brownian motion of any star moving in non-regular 

galaxy [10] :  
( )( )

( ( ), ) ,GP tdq t
q t t

dt M


             (6) 

  Where GP  plays the role of gravitational noise with 
the correlation function 

   
3

( ) ( ') ( ').G G

m G
P t P t t t

C
                            (7) 

  Equation (6) has the Brownian bridge solution as 
following form 

0

( )
( ) ,GP s

q t q t ds
M

                            (8) 

  Where we let ( )q t  be a lot of Brownian bridge paths, 

0( )q t   be the average path, and the last term should 

be the path fluctuation deviating from average path, 

thus we have  

          
' ",

0

( )
,

t
q qG
t

P t
ds X

M

 

                            (9) 

  We may write 
' ", ,q q

t tX X
 

  thus we have 

( ) ( ) ,tq t q t X                            (10) 

where ( )q t
 should be Brownian bridge paths in 

stochastic curved space, which may be defined by the 

following formula [2]  

      
' "

0

, ' " '

0

( ),q q

t t t

t
X B q q q B

t

               (11) 

Let 
' " ' "

0

, ' , "

0 , ,q q q q

tX q X q
       and put 

1 2 0 10 ,n nt t t t t      L when 't =0 and "t = 0t , all 

the Brownian bridge paths must pass through two 

boundary points 
'(0, )q

 and 
"

0( , )t q
 in the torsion-

free case. We may suppose that ( )q t
 be stochastic 

geodesic lines, ( )q t be average geodesic line, and tX  

be fluctuation path deviating ( )q t  as shown in figure 1. 

 

Figure 1. The integral region is equal to 2 times the size of 

the following triangle. 

   The mean-square-displacement of the star-

Brownian motion in stochastic curved space 

should be calculated by the following 

method

2 1 2
1 2 1 2 1 2

0 0 0 0

( ) ( )
( ) ( ) ( )

t t t t
G G

t

P t P t
q dt dt t t dt dt

M M

  
  

     
  

   
3

1 2

1 2 1 2 1 220 0 0 0

( )

( ) .
t t t t

M G
t t

C MG
dt dt dt dt t t

M C





  
  

           
   

  

     

（12）     

Now, we transform the integral variables into 

1 2( ) ',t t t  and 20 ',t t t    which shows in figure2. 

 

Figure 2. Where we let ( )q t  be a lot of Brownian bridge 

paths, ( )q t  be average classical trajectory. Let '( , ')q t  and "( , ")q t  

be the two possible boundary points on ( )q t , and tX  be path 

fluctuations deviating from classical trajectory ( )q t , and these 

paths lie on stochastic super surfaces.  

  Thus we have  

' '

2
0 0 0

2 ' ( ') 2 ( ') ( ') '
t t t tMG MG
dt dt t t t t dt

C C
 

    
    

   
  

' '

0 0
2 ( ') ' 2 ' ( ') ' 2 .

t tMG MG MG
t t dt t t dt t

C C C
 

     
       

     
         (13) 

    In equation (13) , we have used the properties of 

 -function: 
'

0
' ( ') ' 0,

t

t t dt  since ' ( ') 0,t t   and 
'

0
( ') ' 1.

t

t dt  Inserting equation (13) into equation (12) , 

we obtain the mean-square-displacement       

2( ) 2 .t

MG
q t

C

  
   

 
                                (14) 

From formula (14) , we can derive the energy 
fluctuation of some star in stochastic curved 

space
21 1

2
2 2

q q MG
E Mg Mg t t

t t C

 

 

    
          

2

,G

M G
g

C
  
 

    
 

h        (15)             

Where   
2

,G

M G
g

C


 
  

 
h        (16) 

     Which should be the action quantum for any star 

moving in stochastic curved space, which is called 

gravitational action quantum. In formula (14) , we 
may define the gravitation-diffusion coefficient    

.G
G

MG
D

C g M

 
h

                           (17a) 

    Comparing the quantum-diffusion coefficient 

derived by us [3] ,
2

QD
m


h

        (17b) and thermal-
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diffusion coefficient ,
kT

D
K

      (17c) (k is Boltzmann 

constant, K is friction coefficient) they related to 

gravitational constant G Planck constant h  and 

temperature T, they have extremely interesting 
physical senses. 

BROWNIAN BRIDGE PATH INTEGRAL IN 

STOCHASTIC CURVED SPACE 

  Our basic postulation is that the path integral is in 

the stochastic curved space, and this space should be 

with stochastic curvature, but which is in the torsion-

free case. We may suppose [4]  
1

'

0

1 1

( ), | ( '), ' ( ),
N N

n n

n n

q t t q t t dq k q  





 

    
  

      (18)           

where 0 ( )nK q   is the short-time amplitude, 

and

2 2

0 ( ) exp , ,
2 2

n n
n

G

q qi M M
K q s  

 

       
        
      

h
           

(19a)  the short-time post point action 

( , )
2

v

v

M
s A q q q g q q 


 

  

( ) ( )
2

v

v t t

M
g q t X q t X



 
   

      
  

2( ) ( ) ( ) ( )
2

v v

v t t t

M
g q t q t q t X X q t X 



       
    

  
2

2( ) ( )
2

n
t t t

qM
g q t X X q t g X 

 


       
      

     
.          (19b) 

Inserting (19b) into (19a) and (18), we obtain 

'

1

( ), | ( '), ' exp ( )
2

N
v

n v

n G

i M
q t t q t t dq g q q  


 






             
  h

2
1

2

1 1

exp ( ) ( ) ,
2

N N
vn

n v t t v t

n n G

qi M
dq g q t X X q t g X

 


    


 

                        
  h  

                                                                    (20) 

Where

2 2
21 1 1

2 2 2

1 1 1

t t
t v v

G G G

dx dBiM iM iMN N Ng X g g
dt dt

n n n

e e e
  



  

  

   
h h h

1 2 2 ( 1),
2 2

1

,
G G

G G

iM dt iMN g D D N g
dt

n

e e
 

 



 
h h

      (21a) 

Inserting(21a)into(20),we obtain 

1 1( ) ( )
2 2

1 1

,
t v j

G G

iM iMN Ng q t X g q t X

n n

e e

 
 

 


  

 

 
h h          (21b) 

and   

2

1 1
22

1 1

.

v
n

v
GG

i MqiM g q qN N

n n

e e






  
   

     
   

 

 
hh                (21c) 

Inserting (21) into (20), we 

obtain
'

1

( ), | ( '), '
N

n

n

q t t q t t dq  





   
  

  g

2

2 ( )1
2

1

.

jv t
v v v

G

X dBiM
g q q g q t gN

dt

j

e

 
  

 

   
  

  




h

               (22) 

We rewrite(22)as the following 

form
" '

( )
" '

|
"| ' ( ) G

i
S q t

q q
q t q t g q t e



 

  
 
 

   
h

0

0
( 1)2 .

2 2

t
v

v v G
G G

iM iM
g q q dt g N D

e e


 

 




h h

1

1

" '
1 2

( )lim 1

| , ,
1

,

N

v j
G j

j

iM
g q t X N

jq q X X X
j

g e d X




 

 



 

    





h

L
(23) 

Where the conditional Gaussian function should 

be written as [5]  

 

2

2

" '

41

1 2 1|
1 22

, , .

2

i

j

X

N

jq q
j

j

e
g X X X 











 
  

       
 
  

L

 

" ' 2
1

( )

4 ( " ')

1

2

.

2 2 ( " ')

G

q q

D t t

G

e

D t t

 




 


 
 
 
 
 

                    (24) 

In the torsion-free case, the mathematical 
structure of formula(23)represents the Brownian 

bridge path integral in stochastic curved space. 

This mathematical form is analogous to the 

calculation of the conditional expectation for 
the probability amplitudes along respective 

Brownian bridge paths ( )q t  to the probability 

amplitude of boundary interval " ' [6]( ).q q  We 
integrate respectively to each independent 

increment | |jX  of path fluctuation in (23), by 
using Stratonovich stochastic integral, which 

has usual integral method,  
1

2
2

2

1
| | ( )2

| |
4

2

1
| |

2

j

j
j G

j

X iMg q t
X

X j

j

I e e d X










 





 
  
 
 


h

2 2 2

1

2

( )

2

1
(2 ) ,

2

j ju i

j

j

e e du
   




   

 

 
 
 
 

      (25) 

Where 
1

2| | | |( )
, , ,

2 2

j jv

j G j

X d XMg q t
u du






 



 
  

h
thus can 

write  
2 2( )

,iu i
I e du e d

   
 

  

 
      (26)          

Where , ,ju i du d       we have  
2 2 2( )2 ,I e d d

 

 
  

 
                        (27a)                  

2 22 2

0 0 0
,r rI e rdrd e dr



  
 

        (27b)          

Which represents in polar coordinate form, 

therefore
2 2

1

2

2

1
(2 ) .

2

j

jX j

j

I e
 

 






 
 
 
 

     (27c)           

Inserting (27c) into (23) , we 

obtain
0

0
( 1)2

2 2" '"| '

t
v

v v G
G G

iM iM
g q q dt g N D

q t q t e e


 

 

 


  

h h

 

" ' 2

2 2

1
1( )
24 ( " ') 1

1 2
12

1
(2 ) .

2
2 2 ( " ')

G

j

q q

D t t N

j

j
j

G

e
e

D t t

 

 
 





 

 




 
  
  
    

 

  

(28)       
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  According to the formula (17a), we can rewrite 

(28) as following 

form 0

0
( 1)2

2 2" '"| '

t
v

v v G
G G

iM iM
g q q dt g N D

q t q t e e


 

 

 


  

h h

 

2" ' 2

2

1
1( )

2
24 ( " ') 1

1 2
12

1
(2 )

2
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(30) 
   Because the linear operation of Gaussian processes 

should be also Gaussian process [6] , thus the 

probability amplitudes of a star moving along paths 
( ), tq t X

 and ( )q t  in Brownian bridge should have the 

same Gaussian distribution. Therefore, we may 
rewrite (29) as the following form 
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will emphasize that 
2

( )q t
  is the positional 

variance of a star moving in average trajectory 
( )q t

 .According to Huygens-Fresnel principle of 

transmitting amplitude 

wave [4]
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we may rewrite formula (31), let 
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and 
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 be the variable boundary points, and ( )q t  
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which is multiplied by the marginal probability 

amplitude on two sides of formula (31) , and 
integrating for the following boundary 

condition [6]  the probability density 
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We see in (33) that the integral result on left 

side should be the amplitude wave function 

 ( ) ,q t and integral result on right side is 

( )
.

q t
 Thus, formula (33) 

becomes

   
1 ( 1)

( ) ( )
1

( ) 2
v G

G

j

iMN g N D

q t q t
j

q t e


 

  
 





h



 

J. of Appl. Sci. and Eng. Inno., Vol.4 No.1 2017, pp. 6-11 
 
                                                                                                                                                                                                                                                                                                                            

10 
 

 
2

4 2

2 2 2

( )

( )

4 ( )
1

2
222

G
q t j

q t

M G q t
g

C

e













 
 
 
 h

22
( )

2
.G G G

i i M G
pq t Et

i C
e

  
    

 h h h
                          (35) 

From the formula of new action quantum 
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   Formula (36) represents the modulated “plane 
wave function” along some average geodesic 

line, and the amplitude modulation factor is also 

Gaussian function, the peak is at ( ) 0,q   when 

( )
0, ( ( ))

q
q






   is   function wave 

packet [7] , its width is ( )
2 ,

q 
 which should 

diffuse with  as Gaussian wave packet. 

  We may think the wave function (36) is star 

wave function in stochastic curved space, but in 

reality, which is the sample function with 
periodic property of the probability amplitude in 

the star-Brownian motion. 

CONCLUSION 

As mentioned above, we have given the 

Langevin equation with gravitational noise, 

which should be the motion equation of any star 

moving in some stochastic curved space,  then 
we have calculated the variance    

2( ) 2( ) ,t

MG
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                               (14)                   

Where G

MG
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 should be gravitation-diffusion 

coefficient, and we have derived 
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which is called the action quantum for any star 

moving in stochastic curved space. By using 

corresponding Brownian bridge path integral, 
we have derived the star wave function 

 ( )q   as shown in (36), which shows that 

any star moving in stochastic curved space have 

also the wave-star dualism, which is similar to 

the wave-particle dualism. We think the 

stochastic curved space should be a lot of 
stochastic 3-dimensional super surfaces, which 

satisfies the stochastic Einstein field equation 

expanded by us [9] , and the star-Brownian 

motion should be along respective possible 

stochastic geodesic lines in respective possible 

3-dimensional super surfaces. We think any star 

should suffer the gravitational noise ( )GP t ,which 

is generated by the collective motion with some 

stochastic property of  the other stars in galaxy. 
It is known that the wave function represent as 

the path integral form satisfy Schrödinger 

equation. Therefore, the star wave function (36) 

should satisfy a new “Schrödinger equation”. 
Comparing Schrödinger 

equation
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they are analogous. Rewriting Schrödinger 

equation as the following 

form
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Where QD  is the quantum-diffusion coefficient given 

by us [3] . Similarly, we have the diffusion equation in 

star-Brownian 

motion 2

2

, ( , )G G G

d d MG
D D iD

d Cdq


 


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Where GD  is the gravitation-diffusion coefficient, 

and the corresponding “Schrödinger equation” should 

be 2

2

( , ) ( , ),G G Gi q D q
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
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Which is similar to (38a), thus which has the 

following form 2

2

( , ) ( , ),Gq iD q
q

 


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

 
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 
    (39c)                  

which is the “Schrödinger equation” satisfied by the 

star wave function ( , ).q      

    In a word, we have proven that the Langevin 
equation with quantum noise is the motion equation 

of a free particle [3] , and the Langevin equation with 

gravitational noise is the motion equation of any star 
moving in the stochastic curved space (for example, 

any star moving in the non-regular galaxy [10] ),and 

the probability amplitudes with periodic property 

(wave functions) of them satisfy corresponding 

Schrödinger equations. 
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