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Abstract: Based on data from 2010-2019, this paper uses an improved grey prediction model to forecast data on 

thermal power generation, energy consumption, installed thermal power capacity and the number of employees in 

the thermal power industry in each province of China in 2030, and conducts an evaluation study on the efficiency of 

carbon quota allocation in the thermal power industry in China in 2030. The results show that: 1) There is a large 

gap in the efficiency of carbon quota allocation between different provinces in China, and the analysis by dividing 

the provinces into regions shows that the reasons for this gap may be related to the different geographical locations, 

uneven economic development and inconsistent technological levels of each province. 2) The reallocation of carbon 

quotas through the ZSG-DEA model can effectively improve the carbon quota allocation efficiency of inefficient 

provinces. efficiency.3) The 16 provinces located in the economically less developed central and western regions of 

China with relatively low efficiency in carbon quota allocation, such as Hebei and Anhui, need to reduce their carbon 

quotas when allocating efficiently through the ZSG-DEA model, while the 14 provinces with relatively more 

developed economies and high efficiency in carbon quota allocation, such as Guangdong and Shandong, should 

increase their carbon quotas. 
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INTRODUCTION 

The International Energy Agency (IEA) released its 

Global Energy and CO2 Status Report 2018 in March 

2019, which states that energy-related carbon 

emissions increased by 1.7% globally in 2018, with the 

most notable increase being in coal-fired as well as 

gas-fired thermal power plants, which increased by 2.5% 

year-on-year, and coal-fired thermal power plants, 

which increased even more, by 2.9%. It was also the 

single largest contributor to the increase in carbon 

emissions. Thanks to its abundant coal reserves, China 

still relies on thermal power for the majority of its 

electricity generation in this day and age. According to 

available data, China's total installed thermal power 

capacity reaches 1.25 billion kilowatts in 2020, 

accounting for 56.8% of the country's total installed 

capacity, and coal-fired units alone account for 86.4% 

of all thermal power units, which is a significant 

contributor to the large amount of CO2 emissions from 

the thermal power sector! Despite the restricted 

development of many industries in 2020 due to the 

epidemic, overall, China's total CO2 emissions 

increase by 0.71% in 2020, with an increase of 0.7 

billion tonnes to a total of 9.9 billion tonnes. As 

thermal power supply allows for stable supply, 

regulation of peaks and centralised heating, and plays 

an indispensable role in balancing the price of 

electricity, thermal power still accounts for more than 

60% of China's total electricity generation, resulting in 

significant CO2 emissions, despite the Chinese 

government's intensified development of new energy 

sources in recent years (e.g. solar, nuclear and wind). 

The reduction of CO2 emissions from the thermal 

power sector, which is now one of the largest 

producers of CO2 in China, should be considered a 

priority in the fight against climate change [Meng, et. 

al., 2016]. 

Various extensions of the basic DEA model have 

also been developed for resource allocation. Beasley 

(2003) introduced a new DEA model designed to 

maximise the average efficiency of decision making 

units (DMUs) to incorporate organisational resource 

constraints. lins et al. (2003) first put forward the ZSG-

DEA model, the main idea of which is "zero-sum 

game", i.e., a decrease in the number of one party must 

cause an increase in the number of the other party, and 

the main use of the model is to reallocate a certain 

indicator among the decision units to increase the 

value of efficiency. Since then, the ZSG-DEA model 

has been widely used for the study of efficiency 

allocation due to its ability to achieve optimal 

efficiency and Pareto optimality. 

Gomes and Lins (2008) applied ZSG-DEA to 

carbon trading by arguing that for the same level of 

emissions, the party with higher population, energy 

consumption and GDP would be more efficient, and 

therefore considered emissions as an input variable . 

Following these developments, Wang et al. (2013) 

used a similar approach to examine not only the 

distribution of CO2 but also the distribution of energy 

between Chinese provinces in 2020. At the sectoral 
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level, Zhang and Hao (2017) used the ZSG-DEA 

approach to study the efficiency of CO2 allocation in 

China in 2020. Furthermore, in addition, Cai and Ye 

(2019) analysed the impact of industrial structure on 

carbon emissions on top of the regional carbon 

emission allocation in 2020 using the ZSG-DEA 

model. 

METHODOLOGY AND DATA 

Improved grey prediction model 

In this paper, a non-linear grey Bernoulli model is 

chosen to predict the data and a particle swarm 

optimisation algorithm is used to find the best of the 

Bernoulli parameters. The main process of the grey 

Bernoulli prediction model consists of the following 

steps: 

1) Cumulative generation processing of the original 

data series. 

Cumulative generation is to generate a new series 

by adding up the original data series. The cumulative 

generation process can increase the smoothness of the 

series and reduce the impact of the volatility of the 

original data series on the prediction accuracy. It is 

assumed that the time series data of the original data 

for the grey Bernoulli prediction model are 

)](),...,3(),2(),1([ )0()0()0()0()0( nxxxxx   
The first-order cumulative generation is then 

performed by the following equation to obtain the 

first-order cumulative generation sequence, called the 

1-AGO sequence. 
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2）Constructing Bernoulli's differential equations 

and solving them 

The first-order cumulative generating series 

obtained by 1-AGO cumulative generation is to some 

extent similar to the exponential series, which can be 

solved by the first-order differential equation, so the 

grey differential equation is constructed as follows. 
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4）Solving for coefficient vectors 

Assume that the matrices B and Y： 
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Therefore, the parameter matrix of the grey 

Bernoulli prediction model can be derived by the least 

squares method as 
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5 ） Constructing a time response function and 

calculating predicted values 

The time response function can be derived by 

bringing the parameter matrix into the grey differential 

equation： 

r
krar

a

b
e
a

b
xkx
















1

1

)1)(1()1()1()1( ])]1([[)(
 

A cumulative reduction of the forecast results leads 

to the final forecast. 
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ZSG-DEAmodel 

Assuming that an evaluation system has N decision 

making units (DMUs) of the same type, each with R 

input indicators and M output indicators, the BCC 

model for evaluating the relative efficiency of decision 

making unit DMU 0 using the DEA method is as 

follows. 

min𝜃0 

{
 
 
 
 

 
 
 
 ∑𝜆𝑖𝑦𝑖𝑗

30

𝑖=1

≥ 𝑦0𝑗（𝑗 = 1，2，3）

∑𝜆𝑖 = 1

30

𝑖=1

∑𝜆1𝑥𝑖𝑘

30

𝑖=1

≤ 𝜃0𝑥0𝑘（𝑘 = 1）

𝜆𝑖 > 0

 

Again using the example of input orientation, when 

a decision unit is not an efficient decision unit, it is 

assumed to have an efficiency value of 𝛿0. In order to 

achieve a higher efficiency value, it requires a 

reduction in the input variables, the specific reduction 

being 

𝑣 = 𝑥0 − 𝛿0𝑥0 

The amount of CO2 received by the i-th decision 

unit from the target decision unit is 
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𝑥𝑖
∑ 𝑥𝑖𝑖≠0

× 𝑥0(1 − 𝛿0) 

Since all decision units are undergoing proportional 

reduction of inputs, the final input (CO2 emissions) is 

redistributed to decision unit i as 

∑[
𝑥𝑖

𝛴𝑖≠0𝑥𝑖
× 𝑥0(1 − 𝛿0)] − 𝑥𝑖(1 − 𝛿0）

𝑖≠0

 

The input-oriented BCC model for the relative 

efficiency evaluation of decision unit DMU0 using the 

ZSG-DEA method according to the proportional 

abatement strategy is shown below. 

min𝛿0 
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Selection of indicators for the ZSG-DEA model 

Taking into account the interaction between the 

indicators in production activities and the availability 

of data, the system of indicators for the efficiency of 

carbon quota allocation is constructed from the 

following aspects. 

(1) Non-energy inputs. The number of employees 

and installed thermal power capacity were selected as 

non-energy inputs. As China's statistics do not have a 

separate number of employees in the thermal power 

industry, data on the "electricity, heat, gas and water 

production and supply industry", which is highly 

relevant, were selected from the China Labour 

Statistics Yearbook 2020. The data on installed 

thermal power capacity is taken from the China 

Electricity Statistical Yearbook, "Installed Power 

Generation Capacity by Region (Thermal Power)" 

sub-table. 

(2) Energy input. The energy consumption of 

thermal power generation was selected as the energy 

input. The energy consumption data in the "Thermal 

power generation" column of the regional energy 

balance sheet in the 2011-2020 China Energy 

Statistics Yearbook was selected, and the energy 

consumption was converted into standard coal 

consumption according to the discount factor. 

(3) Expected output. Thermal power generation was 

selected as the desired output. Data from the table 

"Thermal power generation by region" in the China 

Energy Statistics Yearbook 2011-2020 were used. 

Determination of initial carbon quota and target 

data for 2030 

In the last 10 years, China's 13th and 14th Five-Year 

Plans have both mentioned the target of reducing the 

CO2 emission rate per unit of GDP, which are 

emissions per unit of GDP in 2025 will be 18% lower 

than in 2020, and CO2 emissions per unit of GDP in 

2020 will be 18% lower than in 2015. In view of this, 

this paper also assumes an 18% reduction in CO2 

emissions per unit of GDP in 2030 compared to 2025. 

Since the current data is only available until 2019, 

the data for 2019 is used as the basis for the projections. 

Here we make two assumptions, the first: assume that 

the rate of change in CO2 emissions per unit of GDP 

is the same for each year, and the second: assume that 

carbon emissions from the thermal power sector 

account for the same proportion of total national 

carbon emissions in 2019 and 2030, so the formula for 

calculating carbon allowances in 2030 is 

𝐶 =
𝐶2019
𝐺𝐷𝑃2019

× 82%
11
5 × 𝐺𝐷𝑃2030 

The growth rate of China's GDP has slowed down 

in recent years, and during the 13th Five-Year Plan 

period, the main feature of China's economic 

development is that the growth rate should shift from 

high to medium to high speed, with a GDP growth rate 

of 5.95% in 2019, 2.3% in 2020 due to the epidemic, 

and 8.1% in 2021. Combined with the current trend of 

declining GDP growth in China, this paper assumes an 

average GDP growth rate of 5% during the 14th Five-

Year Plan period. It is further assumed that China's 

GDP will grow at an average rate of 4% during the 

15th Five-Year Plan period. 

The above assumptions are made because: under the 

"3060" dual carbon target, China's total carbon 

emissions will peak in 2030, and under the target of an 

18% reduction in CO2 emissions per unit of GDP 

every five years, carbon emissions will only cease to 

increase when the five-year average GDP growth rate 

is 4.0488%. This means that we will only be able to 

achieve the 'peak carbon' target by 2030 if the five-

year average GDP growth rate is less than 4.0488%. 

Therefore, assuming a GDP growth rate of 4% is easy 

to calculate and is essentially the fastest rate of growth 

within these limits. 

The calculated carbon emissions in 2030 will be 

5.68% higher than in 2019. This gives a total of 

453,234,400 tons of carbon allowances for the thermal 

power sector in China in 2030. 

Using the improved grey forecasting model 

mentioned above to forecast input-output data, the 

final data on installed thermal power capacity, energy 

consumption, employment and thermal power 

generation in China's thermal power industry in 2030 

are obtained. 

The final results are summarised below. 

 

 

 

 

Table1 Carbon quotas for the thermal power sector by province in 2030 
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Province 

Installed 

capacity

（million kW） 

Energy 

consumption 

(million tons of 

standard coal) 

Number of 

employed 

persons 

(persons) 

Thermal power 

generation 

(billion kilowatt 

hours) 

Carbon Quota 

(million tons) 

Beijing 1228.28 1305.09 100090.45 489.55 3536.10 

Tianjin 1880.47 1491.92 32998.58 707.56 5064.89 

Hebei 5220.25 8332.75 159928.87 2966.87 16989.28 

Shanxi 7559.43 8543.20 188407.21 3252.47 26042.14 

Inner 

Mongolia 
10242.97 21943.59 132248.98 6145.84 66190.03 

Liaoning 3549.16 5081.21 137286.26 1590.83 10891.23 

Jilin 1943.82 1812.85 65679.65 777.06 5426.58 

Heilongjiang 2413.49 2677.31 82977.54 1010.59 6967.36 

Shanghai 2511.35 2094.47 23343.56 690.40 6840.13 

Jiang Su 11696.90 13375.47 82447.71 4912.67 38744.60 

Zhejiang 6142.46 7060.00 58577.20 2768.89 18447.62 

An Hui 5131.47 7957.61 82235.83 2909.30 15591.30 

Fujian 3507.52 4548.29 122252.89 1349.80 10618.19 

Jiangxi 2692.38 3960.81 78197.41 1742.58 7911.85 

Shandong 9380.06 13426.87 322399.83 7572.09 51019.01 

Henan 7699.72 6737.66 202986.90 2080.85 25438.20 

Hubei 3435.28 3868.72 116527.25 1890.96 10291.14 

Hunan 2481.94 13966.04 110842.95 889.25 8707.63 

Guangdong 9814.20 8930.51 136841.60 3880.80 29666.23 

GuangXi 2406.81 3242.41 83046.07 1077.51 7017.33 

Hainan 480.51 688.43 18251.60 239.32 1330.20 

Chongqing 1388.44 1588.08 53604.94 730.79 3800.34 

Si Chuan 1484.06 1303.51 173476.30 572.75 4602.40 

Guizhou 3982.21 4199.23 78414.79 1477.11 11711.21 

Yunnan 1355.92 1423.63 120036.34 356.30 3998.60 

Shanxi 5562.66 4497.89 119898.37 2105.53 16633.78 

Gansu 2154.36 1911.29 76804.93 815.77 6081.11 

Qinghai 546.43 363.40 20186.53 120.94 1149.60 

Ningxia 4142.44 7883.63 19868.33 1910.72 12640.20 

Xinjiang 6365.53 11373.50 119695.39 3153.99 19885.77 

RESULTS AND DISCUSSION 

Initial Carbon Allowance Allocation Efficiency 

Analysis 

The efficiency values were calculated using DEAP 

2.1 as well as MAX DEA software and the final results 

are summarised below. 

Analyzed from a regional perspective, the average 

efficiency values of each region are 0.8625 in the east, 

0.8430 in the west, 0.8282 in the central and 0.5852 in 

the northeast, and the national average is 0.8207. The 

average efficiency values of the east, west and central 

regions are all on par with the national average 

efficiency value, indicating that the carbon quota 

efficiency gap of the thermal power industry in these 

three regions is not large and the development is more 

balanced, only the northeast region The efficiency 

value is more obvious from the national average 

efficiency value, which indicates that the development 

of thermal power industry in the northeast region is 

less coordinated with the carbon quota and does not 

match. The average carbon quota of each region is 

168,374,965,000 tons in the east, 139,435,799,000 

tons in the west, 163,175,924,000 tons in the center, 

and 111,913,831,000 tons in the northeast, with a 

national average of 15,107.8. Similar to the analysis of 

the average efficiency value, the difference between 

the average carbon quota in the east and center is small 

and almost negligible, and they are all larger than the 

national The average value is slightly lower in the west 

than in the east and central parts, and also slightly 

lower than the national average, and significantly 

lower in the northeast than in the east and central parts 

as well as the national average, indicating that the east 

and central parts can ensure higher efficiency despite 
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the high carbon quota amount, and according to the 

idea of efficiency priority, more carbon quotas can be 

allocated to the east and central parts; while the 

efficiency value is low in the northeast, and the 

allocation of carbon quotas should be reduced. 

 

Table2 Efficiency of initial carbon allowance allocation in 2030 

Regio

n 
Province 

Initial 

Carbon 

Allowance 

(million 

tons) 

Initial 

efficiency 
Region Province 

Initial 

Carbon 

Allowance 

(million 

tons) 

Initial 

efficienc

y 

East 

Jiang Su 32748.20 1.000

0 

Wester

n 

Shaanxi 14059.4

1 

1.0000 

Shandong 43122.99 1.000

0 

Yunnan 3379.74 1.0000 

GuangDo

ng 

25074.87 1.000

0 

Qinghai 971.69 1.0000 

Shanghai 5781.50 1.000

0 

Neimengg

u 

55945.9

9 

1.0000 

Tianjin 4657.68 0.919

9 

SiChuan 3890.10 1.0000 

Zhejiang 18087.47 0.866

8 

Guizhou 11618.9

5 

0.8552 

Fujian 11721.01 0.770

4 

Ningxia 14711.8

2 

0.7327 

Beijing 3978.73 0.752

8 

Chongqing 4474.07 0.7200 

Hebei 21426.85 0.680

8 

Gansu 7672.04 0.6737 

Hainan 1775.66 0.634

1 

Guangxi 8950.83 0.6671 

Centr

al 

Henan 21501.20 1.000

0 

Xinjiang 27704.7

3 

0.6241 

Hunan 7359.98 1.000

0 

North 

East 

Liaoning 14994.1

5 

0.6219 

Shanxi 26772.55 0.830

9 

   

Hubei 11420.99 0.766

2 

Heilongjia

ng 

10040.4

9 

0.5920 

Jiangxi 8820.36 0.761

8 

 
  

An Hui 22030.47 0.610

1 

Jilin 8539.50 0.5418 

 

When analysed from a provincial perspective, as 

with carbon quotas, there is a clear disparity in the 

efficiency of initial carbon quota allocation across 

provinces. The number of provinces with an initial 

carbon quota efficiency of 1 is 11, namely Jiangsu, 

Shandong, Guangdong, Shanghai, Henan, Hunan, 

Shaanxi, Yunnan, Qinghai, Inner Mongolia and 

Sichuan, in contrast to Jilin, which has the lowest 

initial carbon quota efficiency of 0.5418. and 

Heilongjiang, also numbering nine. Of the remaining 

10 provinces, 9 have efficiency values between 0.7 and 

0.9, indicating that the efficiency of carbon quota 

allocation in the thermal power sector is more 

polarised between provinces. 

Analysis of redistribution process and results 

Using the carbon quota allocation formula in the 

ZSG-DEA model and after 7 iterations, the efficiency 

of carbon quota allocation in each province was made 

to reach 1. The final results are shown in Table 3 below. 

 

 

 

 

 

Table3Comparison table of carbon quota and efficiency values after iteration 



 

J. of Appl. Sci. and Eng. Inno., Vol.9 No.1 2022, pp. 49-56 
 

                                                                                                                                                                                                                                                                                                                            

54 

 

Province 

Actual 

carbon 

emissions 

(million tons) 

ZSG 

allocation 

quota (million 

tons) 

Differen

ce 

(million 

tons) 

Actual 

efficiency 

efficienc

y after ZSG 

allocation 

Differen

ce 

Beijing 3978.73  3536.10  -442.63  0.7528  1.00 0.2472  

Tianjin 4657.68  5064.89  407.20  0.9199  1.00 0.0801  

Hebei 21426.85  16989.28  -

4437.57  

0.6808  1.00 0.3192  

Shanxi 26772.55  26042.14  -730.41  0.8309  1.00 0.1691  

Neimeng 55945.99  66190.03  10244.0

4  

1.0000  1.00 0.0000  

Liaoning 14994.15  10891.23  -

4102.92  

0.6219  1.00 0.3781  

Jilin 8539.50  5426.58  -

3112.93  

0.5418  1.00 0.4582  

Heilongjian

g 

10040.49  6967.36  -

3073.14  

0.5920  1.00 0.4080  

Shanghai 5781.50  6840.13  1058.63  1.0000  1.00 0.0000  

Jiang Su 32748.20  38744.60  5996.40  1.0000  1.00 0.0000  

Zhejiang 18087.47  18447.62  360.15  0.8668  1.00 0.1332  

An Hui 22030.47  15591.30  -

6439.17  

0.6101  1.00 0.3899  

Fujian 11721.01  10618.19  -

1102.82  

0.7704  1.00 0.2296  

Jiangxi 8820.36  7911.85  -908.52  0.7618  1.00 0.2382  

Shandong 43122.99  51019.01  7896.02  1.0000  1.00 0.0000  

Henan 21501.20  25438.20  3937.00  1.0000  1.00 0.0000  

Hubei 11420.99  10291.14  -

1129.85  

0.7662  1.00 0.2338  

Hunan 7359.98  8707.63  1347.65  1.0000  1.00 0.0000  

Guangdong 25074.87  29666.23  4591.37  1.0000  1.00 0.0000  

GuangXi 8950.83  7017.33  -

1933.50  

0.6671  1.00 0.3329  

Hainan 1775.66  1330.20  -445.47  0.6341  1.00 0.3659  

Chongqing 4474.07  3800.34  -673.73  0.7200  1.00 0.2800  

Si Chuan 3890.10  4602.40  712.30  1.0000  1.00 0.0000  

Guizhou 11618.95  11711.21  92.26  0.8552  1.00 0.1448  

Yunnan 3379.74  3998.60  618.85  1.0000  1.00 0.0000  

Shanxi 14059.41  16633.78  2574.37  1.0000  1.00 0.0000  

Gansu 7672.04  6081.11  -

1590.94  

0.6737  1.00 0.3263  

Qinghai 971.69  1149.60  177.91  1.0000  1.00 0.0000  

Ningxia 14711.82  12640.20  -

2071.62  

0.7327  1.00 0.2673  

Xinjiang 27704.73  19885.77  -

7818.96  

0.6241  1.00 0.3759  

Combining the data in the table, in order to be able 

to compare the changes in carbon quotas between 

provinces more visually, the following Figure 1 is 

drawn. 
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Fig.1Comparison of carbon quota changes 

 

Through the analysis of Table 3 and Figure 1, the 

following conclusions can be drawn. 

1. through the reallocation of ZSG-DEA model, the 

carbon emission allowances of 30 provinces have 

either increased or decreased compared with the initial 

carbon allowances, and their increases and decreases 

are listed in column 4. Among them, there are a total 

of 14 provinces that need to increase their carbon 

allowances, namely: Inner Mongolia, Shandong, 

Jiangsu, Guangdong, Henan, Shaanxi, Hunan, 

Shanghai, Sichuan, Yunnan, Tianjin, Zhejiang, 

Qinghai, and Guizhou. Most of these provinces are the 

eastern coastal provinces in China with relatively 

developed economies and high carbon emission 

efficiency, such as Tianjin, Shanghai, Jiangsu, 

Zhejiang, and Guangdong. With the rapid growth of 

residents' income, these provinces pay more attention 

to the improvement of living environment. As a result, 

these provinces have implemented stricter 

environmental regulation policies during the 11th to 

13th Five-Year Plan period. Compared to the central 

and western provinces, they have placed more 

emphasis on the environmental requirements of 

production technologies and investment in dedicated 

technologies for environmental protection and 

pollution control in their industries, ranking higher in 

terms of efficiency nationwide. In Qinghai's economic 

structure, industry accounts for a relatively low share 

of the economy, which has a good environmental 

profile and relatively high efficiency. Therefore, the 

14 provinces mentioned above should increase their 

carbon emission allowances according to the figures in 

column 4, based on the efficiency allocation proposed 

in this paper. For example, Jiangsu should increase its 

carbon emission quota by 5,996.4 million tons on top 

of the original initial carbon quota. 

2. The provinces whose carbon allowances should 

be reduced are the remaining 16, which are: Beijing, 

Hainan, Chongqing, Shanxi, Jiangxi, Fujian, Hubei, 

Gansu, Guangxi, Ningxia, Heilongjiang, Jilin, 

Liaoning, Hebei, Anhui, and Xinjiang. Most of these 

provinces are economically underdeveloped and 

relatively inefficient in the central and western regions 

of China. For example, Liaoning is located in northeast 

China, and its industrial structure accounts for a high 

proportion of heavy industries such as mineral 

resource development and metal smelting, resulting in 

high carbon intensity and low carbon emission 

efficiency. Shanxi, Inner Mongolia and Shanxi have 

been the major coal resource supplying provinces in 

China. These three provinces supply 65% of the total 

coal resources consumed in China. The good fossil 

energy endowment has led these three provinces to 

concentrate on the development of their main 

industries, most of which are energy intensive, which 

is the main reason for the low efficiency of these three 

provinces. Gansu, Guangxi, Ningxia and Xinjiang are 

the typical economically underdeveloped provinces in 

western China, whose economic systems have long 

lagged behind in total factor productivity and have low 

quota allocation efficiency. Therefore, the above 15 

provinces should reduce their carbon emission 

allowances according to the efficiency allocation 

proposed in this paper and according to the figures in 

column 4. 

3. Further analysis of the amount of carbon 

allowance changes in each province and the initial 

carbon allowance efficiency shows that all provinces 

that need to increase carbon allowances are provinces 

with high initial efficiency, and they include all 11 

provinces with an initial efficiency of 1, and the 

efficiency of the other three are above 0.85; on the 

contrary, all provinces that need to reduce carbon 

allowances are provinces with low initial efficiency 

values, although there is no linear relationship between 

the initial efficiency and the carbon allowance 
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Although there is no linear relationship between the 

initial efficiency and the amount of carbon quota 

change, the overall trend shows that there is a positive 

relationship between the two. It can also be seen that 

the ZSG-DEA model constructed in this paper is a 

carbon quota allocation scheme based on the 

efficiency principle, and "the higher the efficiency 

value, the more carbon quotas need to be increased", 

which is indeed the viewpoint of pursuing efficiency. 

CONCLUSION 

In this paper, an improved gray prediction model is 

used to forecast the data of four main indicators of 

thermal power industry, and then the ZSG-DEA model 

is used to evaluate the carbon quota allocation 

efficiency. 

1. The results of the initial carbon quota allocation 

efficiency measurement in 2030 show that there is a 

large gap in carbon quota allocation efficiency among 

different provinces in China, and the analysis by 

dividing into regions shows that the reasons for this 

gap may be related to geographical location, 

technology level and economic development. 

2. Carbon quota reallocation through ZSG-DEA 

model can effectively improve the efficiency of carbon 

quota allocation in inefficient provinces. The 16 

provinces located in the economically underdeveloped 

central and western regions of China with relatively 

low efficiency of carbon quota allocation, such as 

Hebei and Anhui, need to reduce their carbon quotas 

when allocating efficiently through the ZSG-DEA 

model, while the 14 provinces with relatively more 

developed economies and high efficiency of carbon 

quota allocation, such as Guangdong and Shandong, 

should increase their carbon emission quotas. 
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